
AI-based Question Answering Assistance for
Analyzing Natural-language Requirements

Saad Ezzini∗, Sallam Abualhaija∗, Chetan Arora‡§, Mehrdad Sabetzadeh†
∗SnT Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg

‡Deakin University, Geelong, Australia
§Monash University, Victoria, Australia

†School of Electrical Engineering and Computer Science, University of Ottawa, Canada
Email: {saad.ezzini, sallam.abualhaija}@uni.lu, chetan.arora@monash.edu, m.sabetzadeh@uottawa.ca

Abstract—By virtue of being prevalently written in natural
language (NL), requirements are prone to various defects, e.g.,
inconsistency and incompleteness. As such, requirements are
frequently subject to quality assurance processes. These pro-
cesses, when carried out entirely manually, are tedious and
may further overlook important quality issues due to time and
budget pressures. In this paper, we propose QAssist – a question-
answering (QA) approach that provides automated assistance
to stakeholders, including requirements engineers, during the
analysis of NL requirements. Posing a question and getting an
instant answer is beneficial in various quality-assurance sce-
narios, e.g., incompleteness detection. Answering requirements-
related questions automatically is challenging since the scope of
the search for answers can go beyond the given requirements
specification. To that end, QAssist provides support for mining
external domain-knowledge resources. Our work is one of the first
initiatives to bring together QA and external domain knowledge
for addressing requirements engineering challenges. We evaluate
QAssist on a dataset covering three application domains and
containing a total of 387 question-answer pairs. We experiment
with state-of-the-art QA methods, based primarily on recent
large-scale language models. In our empirical study, QAssist
localizes the answer to a question to three passages within
the requirements specification and within the external domain-
knowledge resource with an average recall of 90.1% and 96.5%,
respectively. QAssist extracts the actual answer to the posed
question with an average accuracy of 84.2%.

Index Terms—Natural-language Requirements, Question An-
swering (QA), Language Models, Natural Language Processing
(NLP), Natural Language Generation (NLG), BERT, T5.

I. INTRODUCTION

A software requirements specification (SRS) is a pivotal ar-
tifact in Requirements Engineering (RE). An SRS lays out the
desired characteristics, functions, and qualities of a proposed
system [1]. SRSs are frequently analyzed by requirements
engineers as well as by other stakeholders to ensure the
quality of the requirements [2]. To enable the creation of
a shared understanding among stakeholders from different
backgrounds, e.g., product managers, domain experts, and
developers, requirements are most often written in natural lan-
guage (NL) [3]. Despite its numerous advantages, NL is highly
prone to issues such as ambiguity [4], [5], incompleteness [6],
[7] and inconsistency [8]. Manually screening for such issues
in a lengthy SRS with tens or hundreds of pages is time-
consuming, since such screening requires domain knowledge

for accurately interpreting the requirements. Evoking domain
knowledge is not always quick or easy for humans.

Question answering (QA), i.e., mechanisms to instantly ob-
tain answers to questions posed in NL [9], would be useful as a
way to make requirements quality assurance more efficient. To
illustrate, consider the example requirements in Fig. 1. These
requirements originate from an SRS in the aerospace domain.
To facilitate illustration, the requirements in the figure are
prefixed with identifiers. For simplicity, we further assume
that each requirement in our example is one text passage.
In practice, a passage, as we elaborate in Section III, can
be made up of multiple consecutive sentences, potentially
covering multiple requirements.

While analyzing requirement DR-13 in Fig. 1, the developer
implementing the computations related to the “wet mass” of
a spacecraft might come up with question Q1, also shown in
Fig. 1. Q1 could be prompted by the developer having doubts
about the concept of “wet mass” or them wanting to verify
their interpretation. A challenge here is that the answer to a
posed question may be absent from the SRS. This happens
to be the case for Q1. Since the presence of a requirements
glossary cannot be taken for granted either [10], to answer
Q1, one may need to consult external domain resources. These
resources could be other SRSs from the same domain, or when
such SRSs are non-existent or sparse, a domain-specific corpus
extracted from a general source such as Wikipedia. On the
right side of Fig. 1, we show excerpts of a domain-specific
corpus automatically extracted from Wikipedia using an exist-
ing open-source corpus extractor [11]. As seen from the figure,
just like the SRS being examined, the corpus is made up of
passages. These passages may nonetheless be dispersed across
multiple documents in the corpus. An answer to Q1 can be
found in the extracted corpus. This answer can guide analysts
toward making the SRS more complete by providing additional
information in the SRS about the concept of “wet mass”.

In Fig. 1, we provide two further questions, Q2 and Q3, that
can tip analysts to potential quality problems in our example
SRS. Automated QA will find DR-27 and more specifically
the highlighted segment in that requirement to be an answer
to Q2. Upon examining this answer and not finding the exact
frequency of wet-mass computations, the analysts will likely
conclude that the SRS is incomplete. For a final example,

1

Domain-
specific
Corpus

Software
Requirements
Specification

(SRS)

Q3 What is the function of navigation camera system?

Q1 What is the wet mass of a spacecraft?

How often shall the wet mass be computed?Q2

[DR-13] The wet mass of the spacecraft shall not exceed
3004 kg.

Text passages extracted from requirements specifications

[DR-27] The wet mass of the spacecraft shall be
computed at a regular basis.

[SCIR-20] The navigation camera system shall be used
only for the detection of the comet nucleus.

[MISS-29] The spacecraft shall use a navigation camera
system for asteroid detection, approach navigation and
close fly-by tracking of the asteroid.

[SCIR-19] The spacecraft shall carry a science camera
system as part of the scientific payload and a separate
navigation camera system.

Incomplete requirement?

Inconsistent requirements?

Text passages extracted from a domain-specific corpus

In aerospace engineering, mass ratio is a measure of
the efficiency of a rocket.
It describes how much more massive the vehicle is with
propellant than without; that is, the ratio of the rocket's
wet mass (vehicle plus contents plus propellant) to its
dry mass (vehicle plus contents).

A navigation system is a computing system that aids in
navigation. Navigation systems may be entirely on board
the vehicle or vessel that the system is controlling (for
example, on the ship's bridge) or located elsewhere,
making use of radio or other signal transmission to control
the vehicle or vessel.

Navigation is a field of study that focuses on the process
of monitoring and controlling the movement of a craft or
vehicle from one place to another. The field of navigation
includes four general categories: land navigation, marine
navigation, aeronautic navigation, and space navigation.

Domain Knowledge

…

…

…

Fig. 1: Example – from left to right: passages from SRS; posed questions; passages from external domain-specific corpus.

consider Q3. In response to this question, QA identifies several
likely answers both in the SRS as well as in the extracted
corpus. Among the answers are segments from requirements
SCIR-20 and MISS-29. Reviewing these two requirements
side by side (rather than encountering them potentially many
pages apart in the SRS) provides the analysts with a much
better chance of noticing the inconsistency between what the
two requirements expect of the “navigation camera system”.
The answers from the domain-specific corpus and the passages
where these answers are located provide additional useful
information for the review process.

In this paper, we propose QAssist – standing for Question
Answering Assistance for Improved Requirements Analysis.
QAssist builds on open-domain QA, which is the task of
finding in a collection of documents the answer to a given
question [12]. QAssist takes as input a question posed in
NL and returns as output a list of text passages that likely
contain the answer to the question. QAssist further demarcates
a possible answer (text segment) within each retrieved passage.
Given questions such as Q1, Q2 and Q3 in Fig. 1, we are
interested in two sets of text passages: one obtained from the
SRS under analysis (left side of Fig. 1) and the other obtained
by mining a domain-specific knowledge resource (right side
of Fig. 1). These passages and the answers found within them
provide a focused view, helping analysts better understand the
requirements and more effectively pinpoint quality problems.
Contributions. Our contributions are as follows:

(1) We devise QAssist, an AI-based QA approach aimed at
providing assistance with requirements analysis. Given a ques-
tion posed in NL about the requirements in an SRS, QAssist
employs Natural Language Processing (NLP) to retrieve two
lists of relevant text passages: one from the SRS and one from
a domain-specific corpus. In each passage, the likely answer
to the posed question is highlighted. When a domain-specific
corpus does not exist, QAssist automatically builds one, using
the phrases appearing in the given SRS as seed terms. Our
implementation of QAssist is publicly available [13].

(2) We develop in a semi-automatic manner a QA dataset
tailored to NL requirements. We name this dataset REQuestA
– standing for Requirements Engineering Question-Answering

dataset. REQuestA has been built by two third-party human
analysts over six SRSs spanning three application domains.
Overall, REQuestA contains 387 question-answer pairs. Of
these, 214 are manually defined; the remaining 173 are gen-
erated automatically and then subjected to manual validation.
We make the REQuestA dataset publicly available [13].

(3) We empirically evaluate QAssist on the REQuestA
dataset. Our results indicate that QAssist retrieves with an
accuracy of 100% from a domain-specific corpus the document
that is most relevant to a given question. Furthermore, QAssist
localizes the answer to a question to three passages within
the requirements specification and within the corpus with
an average recall of 90.1% and 96.5%, respectively. QAssist
demarcates the actual answer to a question with an average
accuracy of 84.2%.

Significance. We believe our work is significant for the RE
and NLP communities, as we discuss next. In RE, auto-
mated QA has been investigated only to a limited extent and
mostly in the context of traceability [14]–[18]. Traceability QA
primarily targets the relationship between different artifacts,
e.g., requirements, design diagrams and source code. More
recently, QA has been studied for improving the understanding
of compliance requirements [19]. For RE, the significance
of our work is two-fold. First, our QA solution is, to our
knowledge, the first to empirically investigate the application
of modern QA technologies over industrial requirements.
Through a seamless process of posing questions and getting
instant answers, our approach enables analysts to explore po-
tential quality issues, e.g., incompleteness and inconsistency.
Second, alongside our solution, we build and publicly release
a considerably sized QA dataset covering six SRSs from
three application domains. This dataset focuses on clarification
questions posed over SRSs and is the first dataset of its kind.

QA is widely studied in the NLP community [20], where,
as we elaborate in Section VII, many automated solutions and
datasets have been proposed and evaluated. The most well-
known QA datasets in the NLP literature are derived from
Wikipedia, e.g., SQUAD [21], TriviaQA [22] and NQ [23],
to name few. There are also examples of domain-specific
datasets, e.g., in the medical [24]–[26] and railway [27] do-

2

mains. From an NLP standpoint, our work is significant in that
it is capable of looking beyond a single source for identifying
answers to a posed question. The NLP literature concentrates
mainly on the situation where the answer to a question resides
in an a-priori-known source document (or text passage). Our
work departs from this position by bringing in a secondary
source of knowledge, namely a domain-specific corpus, to
complement the primary source (in our case, an SRS), while
maintaining the distinction between the two sources. Using a
secondary source is necessitated by our application context:
SRSs are typically highly technical with a potentially large
amount of tacit (unstated) domain knowledge underpinning
them. By provisioning for, and when necessary, automatically
constructing a domain-specific corpus, our approach increases
the chance that analysts will obtain satisfactory answers to
their requirements-related questions.
Structure. Section II presents background. Section III de-
scribes our QA approach. Section IV reports on our empirical
evaluation. Section V compares with broad-based search en-
gines. Section VI explores threats to validity. Section VII
discusses related work. Section VIII concludes the paper.

II. BACKGROUND

This section describes the background for our QA approach.
Open-domain QA. Our proposed approach targets the open-
domain QA task (defined in Section I). Modern open-domain
QA solutions work in two stages, combining information re-
trieval (IR) with machine reading comprehension (MRC) [28].
IR is applied first to narrow the search space by finding the
relevant text passages that likely contain the answer to a
question [29]. Subsequently, MRC models extract the likely
answer to the question from the text passages retrieved [21].
An IR-based method is referred to as a RETRIEVER since
it retrieves relevant text, while an MRC-based model is
referred to as a READER since it reads the text to find
the answer [12]. State-of-the-art QA techniques rely heavily
on language models (LMs) such as BERT [30] as an en-
abling technology [31]. Below, we introduce IR and MRC
alongside the LMs that we consider and experiment with in
the development of our approach.
Information Retrieval (IR). Given a query and a collection
of documents, IR methods are designed to rank the documents
according to their relevance to the query [32]. Traditional
methods in IR include term frequency - inverse document
frequency (TF-IDF) and Okapi Best Matching (BM25). TF-
IDF assigns a composite weight to each term occurring in
the document depending on its occurrence frequency in the
document relative to its frequency in the entire document
collection [33]. These weights are used to transform a text
sequence into a mathematical vector. Following this, both the
query and the documents are represented as vectors, with
the query being treated as a (short) document. Relevance is
computed using similarity metrics, e.g., cosine similarity [32].
Similarity metrics quantify the similarity between the query
and a document while normalizing the difference in vector

length; vectors for documents are significantly longer than
those for queries. Unlike TF-IDF which is a binary model
relying on the presence of question terms in the document
collection, BM25 is a probabilistic model that improves the
TF-IDF weights using relevance feedback [34].

In the context of QA, IR-based methods assess relevance
of documents as well as text passages within individual docu-
ments. In the latter case, each passage is regarded as a single
document during vectorization. Despite being relatively old,
BM25 and to a lesser extent TF-IDF are still widely applied
in text retrieval tasks due to their simple implementation and
robust behavior [35]. In addition to traditional methods, dense
and reranking methods have recently been introduced in the
QA literature [35]–[38]. Leveraging language models, dense
methods compute relevance based on the text representations
in the dense vector space, whereas reranking methods combine
the rankings of two different IR-based methods.

Machine Reading Comprehension (MRC). MRC models
are specifically used to extract the likely answer to a given
question from a text passage [21]. MRC is often solved using
pre-trained language models (e.g., BERT), introduced next.
These models typically limit the length of the text passage to
be less than or equal to 512 tokens [30], [39].

Language Models (LMs). Large-scale neural LMs have
rapidly dominated the state-of-the-art in NLP [40]. LMs are
pre-trained on large bodies of text in order to learn contextual
information, regularities of language, and syntactic and se-
mantic relations between words. This learned knowledge can
then be used by fine-tuning LMs to solve downstream NLP
tasks [41], e.g., QA [42]. Below, we briefly discuss the LMs
that we consider and experiment with in this paper.

Bidirectional Encoder Representations from Transformers
(BERT) [30] is pre-trained on the BooksCorpus and English
Wikipedia with two training objectives, namely masked lan-
guage modeling (MLM) and next sentence prediction (NSP).
In MLM, a fraction of the tokens in the pre-training text are
randomly masked. The model is trained to predict the original
vocabulary of these masked tokens based on the surrounding
context. For example, BERT should predict the masked token
“briefed” in the phrase “[MASK] reporters on”. In NSP, the
model is trained to predict whether two text segments are
consecutive in the original text. BERT learns contextualized
representations of words by utilizing the Transformer archi-
tecture [43] and attention mechanisms that allow the model to
attend to different information from different representations.
For example, the model re-weights the embeddings of “bank”
and “river” in the sentence “I walked along the banks of the
river” to highlight the meaning of “bank” in this context.

Efficiently Learning an Encoder that Classifies Token Re-
placements Accurately (ELECTRA) [44] improves the contex-
tual representations learned by BERT by replacing the MLM
training objective with a token replacement objective, i.e.,
randomly replacing some tokens instead of masking them.

A Lite BERT (ALBERT) [45], A Distilled Version of BERT
(DistilBERT) [46], MiniLM [47] and the Robustly optimized

3

BERT pre-training approach (RoBERTa) [48] are other variants
that optimize the size and computational cost of BERT using
methods such as knowledge distillation [49] – a technique that
transfers knowledge from a large unwieldy model to generate
a smaller model with less parameters yet similar performance.

The text-to-text transfer transformer (T5) model [50] is
another interesting and popular LM. T5 is pre-trained on the
Colossal Clean Crawled Corpus (C4) which was also released
alongside the model. C4 consists of hundreds of gigabytes of
clean text that is crawled from the Web. Compared to BERT-
style models, T5 uses a text-to-text framework that enables
addressing a wider spectrum of NLP downstream tasks as long
as they can be formulated as a text-to-text problem.

III. APPROACH

In this section, we describe our approach and also establish
the notation that we use throughout the rest of the paper. Fig. 2
shows an overview of our approach. QAssist takes as input a
question (q) posed in NL by the user and an SRS. In step 1,
QAssist retrieves the most relevant document (d) to q from
an external domain-specific corpus (D). In step 2, QAssist
generates a list of text passages (T) by splitting the input SRS
and d. QAssist then finds in step 3 the top-k text passages
(R ⊂ T) that are most relevant to q. In step 4, QAssist
extracts a likely answer from each text passage retrieved in
step 3. QAssist finally returns as output the relevant text
passages from step 3 alongside the answers extracted in step 4.
As explained in Section II, the pipeline for an open-domain
QA system like QAssist is made up of two phases: (i) IR-
based (spanning steps 1 – 3) and (ii) MRC-based (step 4). In
phase (i), we apply two RETRIEVERS, one for retrieving d ∈ D
in step 1 (document retriever – for short RETRIEVERD) and
another for finding R in step 3 (passage retriever – for short
RETRIEVERT). Next, we elaborate each step of QAssist.

A. Step 1: Document Retrieval

As a prerequisite for applying RETRIEVERD in this step,
a corpus D should be available. When D is absent, it can
be automatically generated using existing corpus-extraction
methods [5], [11], [51]–[54]. QAssist’s ability to incorporate
an external corpus of knowledge into the QA process is im-
portant as a way to enrich the output with domain knowledge.
In this step, RETRIEVERD mines D to find a document d that
is most relevant to q. In particular, RETRIEVERD computes
first the relevance between q and each document in D, and
then ranks these documents according to relevance scores.
From the resulting ranked list, QAssist selects as the result of
step 1 the most relevant document (d ∈ D). Note that, while
unnecessary for our purposes in this paper, the number of most
relevant documents to retrieve from D can be configured to a
value c > 1. In that case, the output d from step 1 would be
the sequential combination of the top-c retrieved documents.

B. Step 2: Splitting

This step takes two documents as input: the SRS under
analysis as well as the most relevant corpus document d

retrieved in step 1. QAssist automatically generates two lists
TS and TD of text passages by splitting the given SRS and d,
respectively. To do so, we employ a simple NLP pipeline
that consists of tokenization and sentence splitting, breaking
the input text (SRS and d) into tokens and sentences. Using
the annotations from this NLP pipeline, we iterate over each
document to identify the text passages.

Recall from Section II that LM-based READERS (which we
apply in step 4) typically limit passage length to 512 tokens.
Accordingly, we define a text passage as a paragraph, unless
the paragraph is too long (i.e., has more than 512 tokens)
and thus cannot be processed by LMs in its entirety. Long
paragraphs are split with one sentence of overlap to preserve
context. Concretely, we apply the following procedure to split
long paragraphs into coherent passages.

Assume that a given paragraph has a sequence of n sen-
tences, s1, . . . , sn. We put consecutive sentences s1, . . . , si
into one passage, such that the length of the resulting passage
is less than or equal to 512 tokens. In the next iteration, we
start at si, i.e., the last sentence of the previous passage.
To create the next passage, we take consecutive sentences
si, . . . , sj subject to the 512-token length constraint. This
process is repeated until all the sentences in the paragraph
have been covered. The rationale for a one-sentence overlap
between adjacent passages from the same paragraph is to help
maintain flow continuity in the passages.

The output from step 2 (TS and TD) is passed to step 3.

C. Step 3: Passage Retrieval

In this step, we apply RETRIEVERT to find the k most rele-
vant text passages to q from each TS and TD. We denote the set
of resulting passages by RS ⊂ TS and RD ⊂ TD, respectively.
In a similar manner to step 1, RETRIEVERT computes and
assigns relevance scores to each text passage in TS and TD.
The passages in each TS and TD are sorted in descending order
of relevance and the top-k passages are picked. In Section IV,
we empirically assess the implications of the value of k for
practice. RS and RD constitute the input to step 4.

D. Step 4: Answer Extraction

In the last step of QAssist, we apply a READER to extract
a likely answer to q from each text passage in RS and
RD. The likely answers are highlighted in and presented
together with RS and RD as the output of QAssist. Which
READER technology yields the best results is a question that
we investigate empirically in Section IV.

IV. EMPIRICAL EVALUATION

In this section, we empirically evaluate QAssist.

A. Research Questions (RQs)

Our evaluation addresses the following RQs:
RQ1: Which RETRIEVER has the highest accuracy in
finding text that is most relevant to a given question? Recall
from Section III that QAssist employs RETRIEVERD in step 1
(i.e., Document Retrieval) and RETRIEVERT in step 3 (i.e.,

4

SRS

Splitting Passage Retrieval Answer Extraction
Document
Retrieval

Question

ReaderDocument
Retriever

Relevant Passages
Containing Answers

21 3 4

IR-based Component

Domain-
specific
Corpus

MRC-based Component

User

Relevant
Document

Text Passages Relevant
Passages

Passage
Retriever

Fig. 2: Overview of our approach (QAssist).

Passage Retrieval). RETRIEVERD takes as input a collection
of documents and returns as output the most relevant document
d ∈ D. RETRIEVERT takes as input a list of text passages and
return as output the top-k passages relevant to a given question.
For each RETRIEVER, we investigate in RQ1 four alternatives
from the IR literature as outlined in Section IV-D. RQ1
identifies the most accurate alternative for each RETRIEVER.
RQ2: Which READER produces the most accurate results for
extracting the likely answer to a given question? QAssist uses
in step 4 (i.e., Answer Extraction) a READER for extracting
a likely answer to a given question from each relevant text
passage retrieved by the passage retrievers in step 3. Multiple
alternative READERS can be applied here as we explain in
Section IV-D. RQ2 investigates these alternatives and identifies
the most accurate one.
RQ3: Does QAssist run in practical time? RQ3 analyzes
QAssist’s execution time. To be applicable in practice, QAssist
needs to be able to answer questions in practical time.

B. Implementation

We implement QAssist using Python 3.7.13 and Jupyter
Notebooks [55]. Specifically, we implement the NLP pipeline
(including the tokenizer and sentence splitter) using the
Transformers 3.0.1 library [56]. We implement the tradi-
tional IR methods and TF-IDF vectorization using Scikit-
learn 1.0.2 [57], and implement BM25 using the BM25
0.2.2 library [58]. The language models that we experiment
with include the IR-based models DistilBERT-base-tas-b and
MiniLM-L-12-v2 from BeIR [59] and the MRC-based models
ALBERT-large v1.0, BERT-large-uncased, DistilBERT-base-
cased, ELECTRA-base, MiniLM-uncased and RoBERTa-base
from HuggingFace [60]. For corpus extraction from Wikipedia,
we use the Wikipedia 1.4.0 library [61]. For question gener-
ation, discussed in Section IV-C, we use NLTK 3.2.5 [62] to
preprocess text from SRSs and corpus documents. We then
apply T5-base-question-generator and BERT-base-cased-qa-
evaluator for automatically generating and assessing question-
answer pairs. Both of these models are from HuggingFace.

C. Data Collection Procedure

To evaluate QAssist, we collected six SRSs from three
application domains, namely aerospace, defence, and secu-
rity. Our data collection resulted in a QA dataset named
REQuestA (RE Question-Answering dataset). To reduce the

cost and effort required for the construction of this dataset,
about half of the question-answer pairs in REQuestA were
generated automatically using text generation models [50] and
then validated by human analysts. The remaining half were
defined manually. In this section, we discuss the desiderata for
REQuestA, the automatic QA generation method, the process
for manual definition of question-answer pairs, and finally the
details of the resulting dataset.

Desiderata. We identify the following desiderata for RE-
QuestA in view of the analytical goals we would like to
support, as discussed in Section I.
(1) Focus on content-based questions. REQuestA is populated
with clarification questions over SRSs. REQuestA thereby
does not contain questions that are not directly related to the
SRS content, for instance, questions related to change impact
analysis or project management, an example of which would
be “How many requirements are not implemented in Phase-
1 of the project?”. Questions of this nature are legitimate in
RE [18], but are outside the scope of our current work.
(2) Inclusion of external sources of knowledge. Motivated
by covering the domain knowledge that is often left tacit
in SRSs, we would like REQuestA to include relevant text
passages not only from SRSs but also from external sources
of knowledge. The inclusion of external knowledge sources
enables us to more conclusively evaluate the effectiveness of
QA by considering requirements-related questions that would
go unanswered based on the contents of a given SRS alone.

QA Auto-generation. Despite the availability of QA datasets,
none of them are directly applicable in our work, as ex-
plained in Section I. Building a ground truth for QA requires
considerable manual effort for proposing both questions and
answers. This prompted us to consider question generation
(QG) [63], [64] as an aid during dataset construction. QG
enables automated derivation of a large number of questions
and answers from a given knowledge source; these questions
and answers can subsequently be subjected to manual valida-
tion for correctness. Such validation generally takes less time
and cognitive effort from humans than deriving questions and
answers from scratch.

An entry in REQuestA is a text passage and a question-
answer pair associated with that passage. An answer in our
work is a short text span in a sentence. The questions and
answers in REQuestA are derived from two different sources:

5

SRS

Domain Analysis

Splitting

Question-answer
Pair Generation

Preprocessing

b

a

c

d

Wikipedia
Articles

Text
Passages

Preprocessed
SRS

QG Model

<q,a> & Text
Passages

Fig. 3: Overview of our question generation method (used
exclusively for building our dataset, REQuestA).

the input SRS and a domain-specific corpus created automat-
ically around the content of the input SRS. Fig. 3 shows an
overview of our method for automatically generating questions
and answers. Given an SRS as input, our method returns a list
of question-answer pairs in four steps, elaborated next.
(a) Preprocessing: In this step, we preprocess the input SRS by
applying an NLP pipeline. The goal of this step is to identify a
set of concepts which are used in the next step to analyze the
domain of the input SRS. To find these concepts, we applied
REGICE [10] – an existing tool for extracting glossary terms
from NL requirements.
(b) Domain Analysis: We build in this step a minimal domain-
specific corpus. To do so, we first group the SRSs from the
same domain and then use the concepts extracted from these
SRSs in step (a). Specifically, we compute for each concept a
TF-IDF score, adapted to work over phrases (e.g., “navigation
camera”) rather than only individual terms (e.g., “camera”).
Next, we attempt to increase the specificity of the concepts
by removing any generic concepts (e.g., “camera”) appearing
in WordNet [65] – a generic lexical database for English. We
then sort the concepts in descending order of TF-IDF scores
and select the top-50 concepts, referring to these concepts
as keywords. Inspired by recent work on the generation of
domain-specific corpora for requirements analysis tasks [5],
we use each keyword to query Wikipedia and find a matching
article, i.e., an article whose title overlaps with a given key-
word. Finally, we randomly select from the matching articles
a subset to use in the next step.
(c) Splitting: In this step, we use the same method presented
in Section III to automatically split the SRS and Wikipedia
articles into a set of text passages.
(d) Question-answer Pair Generation: In this step, we use a
QG model based on the T5 language model (introduced in
Section II). We give as input a text passage to the QG model.
The model first extracts a random answer from the passage
and then automatically generates a corresponding question. For
example, for passage DR-13 in Fig. 1, the QG model could
first pick “3004 kg”, and then generate the following question:
“What shall the wet mass of the spacecraft not exceed?”. The
output of the QG model includes the text passage and a set
of automatically generated question-answer pairs. Each such
pair will be denoted ⟨q, a⟩ hereafter. Note that multiple pairs

can be generated from the same text passage. To reduce the
manual effort needed for validating the questions and answers,
we apply a QA evaluator that is based on BERT. The evaluator
takes as input a pair ⟨q, a⟩ and returns as output a value
representing its prediction about whether the pair is valid.
We sort the auto-generated pairs according to the resulting
scores from the evaluator, and then select the top 5% of the
⟨q, a⟩ pairs automatically generated from each SRS and the
Wikipedia articles in the respective corpus.

Construction of REQuestA. The construction of REQuestA
involved two third-party (non-author) human analysts. The first
analyst has a Master’s degree in multilingualism. The second
analyst has a computer science background with a Master’s
degree in quality assurance. Both analysts had prior experience
with software requirements and had previously contributed to
annotation tasks involving SRSs. Before starting their work,
the analysts participated in a half-day training session on
question answering in RE where they additionally received
instructions about the desiderata for REQuestA.

We shared with the analysts the original SRSs, the randomly
selected Wikipedia articles (created during the domain analysis
step in Fig. 3), and the list of automatically generated ⟨q, a⟩
pairs for each SRS. The analysts were asked to handle each
⟨q, a⟩ pair as follows. Each question q was labeled as valid
indicating that q was correct as-is, rephrased indicating that
q was semantically correct but required structural improve-
ment to become valid, or invalid indicating that q did not
make sense. Similarly, each answer a was labeled as correct,
corrected, or invalid with similar indications to the ones
mentioned above for q. Additionally, a could be labeled as
not in context indicating that the question cannot be answered
from the given text passage. In this case, we consider the
answers as invalid. We further asked the analysts to manually
define question-answer pairs on each text passage during the
validation process. We discuss quality considerations for our
dataset later in this section.

To construct the REQuestA dataset, we filtered out any pair
where either q or a was invalid. For the remaining pairs, we
used the rephrased q and corrected a according to the revisions
suggested by the human analysts. In total, we automatically
generated 204 ⟨q, a⟩ pairs; 111 from the SRSs and 93 from
the Wikipedia articles. From these, we filtered 31 pairs due to
invalid questions or answers, leaving 173 pairs in the dataset
(86 from the SRSs and 87 from the Wikipedia articles). We
further included in REQuestA question-answer pairs that the
analysts had defined manually during the validation process
alongside the respective text passages. In total, the analysts
manually defined 214 pairs (103 from the SRSs and 111 from
the Wikipedia articles). Overall, REQuestA contains 387 pairs.

Table I provides summary statistics for REQuestA. Specifi-
cally, the table lists the number of auto-generated ⟨q, a⟩ pairs
(auto) as well as the number of pairs manually defined by
the analysts (man). The table further shows |TD| indicating
the average number of text passages in the Wikipedia articles
(noting that there are multiple articles in each corpus), and

6

TABLE I: Summary Statistics for the REQuestA Dataset.

⟨q, a⟩ ⟨q, a⟩

Domain |TD| auto man SRS |TS | auto man

Aerospace 42 45 53 #1 24 8 18
#2 107 37 40

Defence 94 38 50 #3 11 5 4
#4 71 19 26

Security 23 4 8 #5 18 15 13
#6 4 2 2

Total 159 87 111 - 235 86 103

|TS | indicating the number of text passages in each SRS.
Quality of REQuestA. As a quality measure, the two analysts
reviewed an overlapping subset amounting to 10% of the
auto-generated ⟨q, a⟩ pairs. We counted an agreement when
the analysts selected the same label for a given question or
answer (i.e., valid or invalid), noting that valid includes both
rephrased and corrected. On this subset, the analysts were in
full agreement (i.e., no disagreements) on the labels for the
questions and answers.

To further ensure the quality of the dataset, we analyzed
all the automatically generated questions and answers against
the corrections provided by the human analysts. Out of the
173 valid questions, the analysts collectively rephrased 24
questions (representing ≈14% of the auto-generated questions)
and corrected 46 answers (representing ≈26% of the auto-
extracted answers). Out of the 46 corrected answers, 26
were expanded by the analysts to include missing tokens,
e.g., the auto-extracted answer “software code” was corrected
to “implemented software code”. To increase the quality of
our dataset, we included in REQuestA the corrected answers
and not the auto-extracted ones. Following best practices
in the natural-language generation literature and machine
translation [66], we apply BLEU for lexical similarity and
BERTScore for semantic similarity. Given two questions, q1
and q2, BLEU measures the overlapping tokens between q1
and q2. The score is then normalized by the total number of the
tokens in q1 and q2. BERTScore measures semantic similarity
between q1 and q2 based on contextual word embeddings.
The resulting scores are BLEU=0.54 and BERTScore=0.95.
These values indicate that the auto-generated questions and
the rephrased ones are semantically very similar albeit using
different structures. These scores indicate that our QG method
successfully produces semantically correct questions, while
also implying that the analysts frequently chose to make
structural improvements for better readability.

Since no training or fine-tuning is performed in our ap-
proach, we use REQuestA in its entirety for empirically eval-
uating the available QA technologies. To facilitate replication
and future research, REQuestA is made publicly available [13].

D. Evaluation Procedure

To answer our RQs, we conduct the following experiments.
See Section II for background.

EXPI. This experiment answers RQ1. We evaluate in EXPI
four alternative RETRIEVERS, including the traditional RE-
TRIEVERS TF-IDF and BM25, DistilBERT dense RETRIEVER,
and a reranking RETRIEVER that pairs BM25 with MiniLM
cross encoder. We identify in EXPI the most accurate RE-
TRIEVER applied in step 1 of our approach (Fig. 2) for
retrieving the most relevant external document from a domain-
specific corpus. We further identify the most accurate RE-
TRIEVER in step 3 for retrieving from the input SRS and
the most relevant external document the top-k relevant text
passages for a given question. We compare the performance
of the alternative RETRIEVERS using two evaluation metrics
commonly used in the IR literature [29]. The first metric is
recall@k (R@k) and assesses whether the document (or text
passage) containing the correct answer to a given question
(q) is in the ranked list of the top-k documents (or passages)
produced by the RETRIEVER. The second metric, normalized
discounted cumulative gain@k (nDCG@k), is similar to R@k,
except that it accounts not only for the mere presence of the
relevant document (or passage) but also for its rank.

We note that we are interested only in the most relevant
document (top-1) retrieved by the document RETRIEVER in
step 1 of our approach. In this case, ranking is not relevant
and the above two metrics produce the same result; we thus
report only R@1 for the document RETRIEVER. To run EXPI,
using an existing open-source tool [11], we generate domain-
specific corpora covering the aerospace, defence, and security
domains and corresponding to the SRSs in our study.

EXPII. This experiment answers RQ2. To extract the answer
to a given question in step 4 of our approach (Fig. 2), we
experiment with the following alternative READERS: ALBERT,
BERT, DistilBERT, ELECTRA, MiniLM, and RoBERTa. We
compare the performance of the READERS using Accuracy
(A), computed as the number of questions correctly answered
by the READER divided by the total number of questions.
To decide whether an answer is correct, we compare the
extracted answer by the READERS against the answer provided
by the analysts in our dataset (REQuestA). We evaluate an
extracted answer for correctness in three different modes. Let
aGT denote the ground-truth answer to a question. In exact
matching mode, the extracted answer fully matches aGT . In
partial matching mode, the extracted answer partially matches
(i.e., overlaps with) aGT . In semantic matching mode, the
extracted answer has a cosine semantic similarity with aGT

that is greater than a predefined threshold. In our work, we
apply a threshold of 0.5 [67]. The first two modes evaluate
correctness at a lexical level, whereas the last mode measures
correctness based on meaning.

In addition to reporting accuracy, we also report F1
measure – another commonly-reported lexical metric in the
QA literature [68]. F1 is the harmonic mean computed as
2 ∗ P ∗R/(P +R), where P is the precision and R is the
recall. We define P as the number of overlapping tokens
between the extracted answer and aGT divided by the total
number of tokens in the extracted answer. We define R as the

7

TABLE II: R@1 of Document RETRIEVER (RQ1).

Domain |D|† TF-IDF BM25 Dense Reranking

Aerospace 1158 100 100 99.0 100
Defence 781 100 100 98.9 100
Security 50 100 100 91.7 100

† |D| is the number of articles in the corpus (D) of Wikipedia articles.

number of overlapping tokens between the extracted answer
and aGT divided by the total number of tokens in aGT . We
report in EXPII overall F1-score averages for all questions.

EXPIII. This experiment answers RQ3. We report the
execution of our approach with the most accurate models from
the previous experiments. EXPIII is conducted on the Google
Colaboratory cloud using the free plan with the following
specifications: Intel(R) Xeon(R) CPU@2.20GHz, Tesla T4
GPU, and 13GB RAM.

E. Answers to the RQs

RQ1. Which RETRIEVER has the highest accuracy in finding
text that is most relevant to a given question? RQ1 identifies
the best-performing (i) document RETRIEVER and (ii) passage
RETRIEVER to be applied in steps 1 and 3 of QAssist,
respectively. Tables II and III show the results of EXPI.

In Table II, traditional RETRIEVERS (TF-IDF and BM25)
are clearly able to find the most relevant documents across
all domains, thus achieving a perfect R@1. In comparison,
our dense RETRIEVER (DistilBERT) has an average R@1 of
96.5%, which is slightly worse than the traditional RETRIEV-
ERS. The reranking RETRIEVER achieves a perfect R@1 as
well since it partially uses the results of BM25. In view of
these results, we select BM25 as the RETRIEVER to use for
step 1 of our approach, since BM25 is computationally more
efficient than the reranking RETRIEVER. Compared to TF-
IDF, BM25 is more robust [69] and widely-applied in the QA
literature [35].

In Table III, we show the results for retrieving the most
relevant k text passages for k = 1, 3, 5, 10. The upper part
of the table provides the average results for our collection of
six SRSs. The lower part of the table shows the results for
retrieving passages from the most relevant external document.
We recall from Section III that TS denotes the set of passages
within a given SRS and TD denotes the passages in the most
relevant external document from the corpus. In our dataset, an
SRS has on average about 40 passages, whereas an external
document has on average 53 passages. Here, recall measures
the presence of the relevant passage in the retrieved passages,
whereas nDCG measures whether the relevant passage has a
higher rank among the retrieved passages. In our analysis, we
focus on recall, noting that rank does not play as significant
a role for small values of k (≤ 3) where our discussion of
recall, below, leads us to.

We observe from Table III that the reranking RETRIEVER
outperforms the alternatives in the two metrics and for all k
values, except for the security domain as we elaborate later. We
naturally see improvement in recall with higher values of k.

TABLE III: Accuracy of Passage RETRIEVER (RQ1).

Top-1 Top-3 Top-5 Top-10

From TS R nDCG R nDCG R nDCG R nDCG

(1) 60.3 60.3 78.6 70.9 84.3 73.3 89.8 75.1
(2) 62.8 62.8 78.5 71.9 85.4 74.6 92.4 76.9
(3) 52.9 52.9 81.2 70.3 86.5 72.5 88.5 73.2
(4) 78.9 78.9 90.1 85.8 92.2 86.6 92.4 86.7

From TD R nDCG R nDCG R nDCG R nDCG

A
er

os
pa

ce (1) 43.6 43.6 64.7 56.0 68.6 57.5 91.5 94.9
(2) 50.5 50.5 83.0 70.1 91.7 73.6 95.0 74.7
(3) 66.7 66.7 87.3 79.5 90.6 80.8 91.3 81.0
(4) 75.1 75.1 95.0 87.3 95.0 87.3 95.0 87.3

D
ef

en
ce

(1) 41.9 41.9 62.1 54.1 66.7 55.9 86.3 62.2
(2) 38.0 38.0 81.2 64.1 89.3 67.3 94.6 69.1
(3) 77.2 77.2 89.8 84.7 91.2 85.2 92.5 85.6
(4) 76.0 76.0 94.6 87.6 94.6 87.6 94.6 87.6

Se
cu

ri
ty (1) 33.4 33.4 70.0 53.8 70.0 53.8 80.0 57.4

(2) 43.3 43.3 70.0 59.3 100 71.3 100 71.3
(3) 63.3 63.3 100 85.2 100 85.2 100 85.2
(4) 80.0 80.0 100 92.6 100 92.6 100 92.6

(1) TF-IDF, (2) BM25, (3) Dense, and (4) Reranking.

Concretely, the reranking RETRIEVER achieves for retrieving
passages from the SRSs an average recall of 78.9%, 90.1%,
92.2%, and 92.4% at k = 1, k = 3, k = 5, and k = 10,
respectively. The same RETRIEVER achieves for retrieving
passages from the external document an average recall of
77.0% at k = 1, and 96.5% at k = 3, k = 5, and k = 10.

Selecting the best value of k has practical implications.
While higher k values yield better recall, they entail additional
effort for reviewing the results of QAssist. For instance,
selecting k = 10 yields the best overall results, which implies
that a stakeholder has more relevant context at their disposal
for understanding and interpreting the requirements. However,
this comes at the cost of more time and effort needed to browse
through the retrieved text passages. We deem k = 3 as a
reasonable compromise in our context, since the gain in recall
at k = 5 (in comparison to k = 3) is merely ≈2 percentage
points; selecting k = 5 would imply browsing through two
additional passages per question. That said, k can be left as a
user-configurable parameter, to be adjusted according to needs
and the time budget available.

The results show that the dense RETRIEVER, DistilBERT,
performs on par with the reranking RETRIEVER for the se-
curity domain. In our collection, the domain-specific corpus
generated for security is the smallest among the corpora as
it is generated from two SRSs, one of which is very small
(SRS #6). Furthermore, the number of passages analyzed
in this domain is 23, compared to the aerospace and de-
fence with an average of 42 and 94 passages, respectively.
This observation suggests that the dense RETRIEVER is more
effective when there is a fewer number of passages. The
performance of the reranking RETRIEVER is in general better
than that of the dense RETRIEVER for k = 3. Consequently,
we select the reranking RETRIEVER as the best-performing
alternative for step 3 of our approach.

8

The answer to RQ1 is that BM25 is the best document
RETRIEVER with a perfect recall, and the reranking RE-
TRIEVER is the best passage RETRIEVER with an average
recall@3 of 90.1% and 96.5% for SRSs and external
(corpus) documents, respectively.

RQ2. Which READER produces the most accurate results for
extracting the likely answer to a given question? Table IV
shows the results of EXPII, comparing the accuracy of the
READERS for extracting the answer to a given question. Note
that in RQ1, we focused on retrieving passages, whereas
in RQ2, we are interested in determining which READER
identifies the most accurate text span containing the answer
within the passages already found.

The table shows that the most accurate READER varies de-
pending on which matching mode we choose. Considering the
exact matching mode, RoBERTa is the most accurate READER,
followed by ALBERT, with an average accuracy of 24.6% and
24.3%, respectively. This finding is corroborated by the F1
measure. Nevertheless, both READERS are outperformed by
DistilBERT in the partial matching mode which achieves the
best average accuracy of 86.4%.

Noting their lexical nature, the exact and partial matching
modes as well as the F1 measure have the drawback that they
focus on whether the extracted answer is literally the same as
the one in the ground truth rather than providing equivalent
information [70]. For example, consider question Q1 in Fig. 1.
The answer extracted for this question from the first passage
of the domain-specific corpus (right side of the figure) could
be the following: “how much more massive the vehicle is
with propellant than without”. This answer does not have a
lexical overlap with the highlighted answer (shaded green in
the figure), despite considerable similarity in meaning. For
such cases, lexical metrics would evaluate the extracted answer
as incorrect. To better assess the performance of the READERS
in our context, where users may be seeking all closely relevant
information, we further report results for the semantic match-
ing mode. Using the semantic matching mode would lead
us to the same conclusion as that offered by exact matching
and F1. That is, ALBERT and RoBERTa have the highest
average accuracy of 84.2% and 84.0%, respectively. Despite
the similar behavior of the two models, ALBERT considerably
outperforms RoBERTa in partial matching mode with an
average percentage points of ≈19%. We thus select ALBERT
as the best-performing READER for answer extraction.

Since Wikipedia has been used for pre-training BERT
and many variants thereof, and considering that part of our
question-answer pairs originate from Wikipedia, we show that
answer extraction in our approach is still accurate for content
that originates from sources different from Wikipedia. Recall
from Table I that REQuestA contains a total of 189 (= 86
+ 103) question-answer pairs from SRSs and another 198 (=
87 + 111) pairs from Wikipedia articles. The 189 question-
answer pairs from the SRSs are independent from Wikipedia.
The performance of BERT-based models over these pairs is a

TABLE IV: READER Accuracy Results (RQ2); table further
shows loading time for READERS (a consideration for RQ3).

Model Accuracy F1 Time
Exact Partial Semantic

ALBERT 24.3 79.1 84.2 64.6
193.2

qS 31.7 78.0 86.4 67.6
qD 17.2 80.2 82.1 61.7

BERT 21.4 70.6 82.9 63.1
32.2

qS 28.3 70.4 83.8 66.4
qD 14.8 70.8 82.1 59.9

DistilBERT 23.0 86.4 75.9 61.0
5.8

qS 32.7 86.4 77.3 67.5
qD 13.7 86.5 74.6 54.8

ELECTRA 21.1 81.3 81.0 60.1
19.1

qS 31.2 82.1 80.6 65.0
qD 11.5 80.5 81.4 55.4

MiniLM 23.3 73.3 82.4 63.4
5.0

qS 32.4 73.6 82.6 66.1
qD 14.6 73.0 82.2 60.9

RoBERTa 24.6 60.2 84.0 65.2
11.6

qS 32.8 61.0 84.3 70.1
qD 16.8 59.4 83.7 60.5

The table reports performance results for all question-answer pairs as
well as for SRS-based (qS) and domain-based (qD) pairs separately.

representative indicator for non-Wikipedia content.
In Table IV, we further provide a breakdown of the READER

results based on the origin of the question-answer pairs. We
denote SRS-based questions as qS and domain-based questions
(which, in our case study, are sourced from Wikipedia) as
qD. The table shows that all models achieve on-par or better
accuracy over qS compared to qD. Based on the breakdown
in Table IV, we conclude that the exposure of BERT-based
models to Wikipedia during pre-training is unlikely to have
influenced our performance results.

The answer to RQ2 is that considering both lexical and
semantic measures, ALBERT provides the best overall
trade-off for answer extraction with an average accuracy of
≈24% in the exact matching mode, ≈79% in the partial
matching mode, and ≈84% in the semantic matching mode.

RQ3. Does QAssist run in practical time? To answer RQ3,
we discuss the execution time of our approach based on the
conclusions from RQ1 and RQ2 and the setup described under
EXPIII in Section IV-D. Based on RQ1, we select BM25 as
the document RETRIEVER and the reranking method as the
passage RETRIEVER. For answer extraction, based on RQ2,
we select ALBERT as the READER. With these choices, we
report the execution time for each step of QAssist (Fig. 2).

Retrieving the most relevant document from the corpora cre-
ated for the aerospace, defence, and security domains (step 1)
requires 2.06, 1.37, and 0.08 seconds, respectively. The time
required in step 2 for splitting a document into tokens and
sentences is comparatively negligible. For retrieving relevant

9

passages in step 3, we note that the six SRSs in our study
vary in size from small (SRS#6 with 32 requirements) to large
(SRS#2 with 1041 requirements). Similarly, the Wikipedia
articles (making up the domain-specific corpora) from which
we retrieve passages vary in size, as shown previously in
Table I. For our dataset, the time required for retrieving
passages from an SRS is 2.27 seconds for the smallest SRS and
6.43 seconds for the largest. For corpus articles, the average
time for passage retrieval is 2.62 seconds. Extracting answers
from passages, i.e., step 4, takes an average of 1.1 seconds.

In addition to the above-reported execution times, there is
a one-time loading overhead for the READER, as shown in
the last column of Table IV. For ALBERT (best READER
from RQ2), this overhead is ≈3.2 minutes. We deem this
overhead acceptable considering that, once the READER has
been loaded, the user can ask as many questions as desired.

Excluding the overhead for loading the READER, answering
an individual question, when averaged across all questions in
our dataset, takes 10.36 seconds. We believe this execution
time is reasonable for most practical situations. Moreover, the
execution time can be improved if one has access to more
powerful computing resources than ours (Google Colab’s free
plan, as noted in Section IV-D).

When run on Google Colab’s free plan, our approach
takes an average of 10.36 seconds to answer an individual
question. In addition, one has to provision for a one-time
overhead of 3.2 minutes to load the required language
model (ALBERT). We find this level of performance practi-
cal for question answering over requirements. Performance
can be further improved with more powerful computational
resources for language models.

V. COMPARISON WITH BROAD-BASED SEARCH ENGINES

An intuitive way for QA during the analysis of an SRS
would be to pose the questions to a (broad-based) search en-
gine such as Google. In the context of our work, search engines
are generally not very effective for two main reasons. First,
answers to domain-specific questions can reside in company-
specific documents which are unlikely to be accessible to
search engines. Our approach, in contrast, gives analysts
the possibility to plug company-specific documents into the
QA system. Second, the lack of domain-specificity in search
engines can easily result in misleading answers. For example,
an online search for “rocket mass” instead of “wet mass” to
answer Q1 in Fig. 1 would point the analyst to the design
of a rocket mass heater1, which is not relevant to the space
domain. Unlike search engines, our approach is scoped to the
original SRS and any external knowledge resources selected
by the user. As such, questions are implicitly disambiguated
as long as the external knowledge resources are domain-
specific. To further illustrate, consider the question “What is
NEAT?”. Posing this question online would lead to irrelevant

1https://en.wikipedia.org/wiki/Rocket mass heater

results due to the ambiguous abbreviation, whereas posing the
same question to our approach would retrieve the definition of
“Near-Earth Asteroid Tracking” – inline with the SRS content.

To empirically assess the success rate of search engines in
our problem context, we posed to Google from our dataset a
total of 50 verbatim questions. Of these, 20 questions were
SRS-based and 30 were domain-based. The authors inde-
pendently investigated whether the top-3 retrieved documents
by Google contained the correct answer as per our ground
truth. Out of the 50 questions, we found that 16 questions
were answered correctly by Google, leading to a success
rate of 32%. From the 16 correctly answered questions, 14
were domain-based. We note that the domain-based questions
in our dataset, REQuestA, originate from Wikipedia articles,
which search engines have access to and can crawl. The out-
come would most likely have been different had the external
knowledge resource not been public. Therefore, in addition to
the need for explicit disambiguation as discussed above, the
success rate of search engines is likely to be affected by the
public accessibility of the documents that should be considered
during QA. In conclusion, we believe that search engines are
currently not the best alternative for QA over specialized and
proprietary material – a situation that is common in RE.

VI. THREATS TO VALIDITY

The validity concerns most pertinent to our evaluation are
internal and external validity.
Internal Validity. The main concern regarding internal validity
is dataset bias. To mitigate bias, the authors ensured that they
were not involved in dataset construction; this task was done
exclusively by third parties (non-authors) who had no exposure
to our technical solution.
External Validity. Our evaluation is based on a dataset contain-
ing six industrial SRSs and spanning three different application
domains. The results we obtained across these SRSs and do-
mains combined with the comparatively large size of our QA
dataset provide confidence about the generalizability of our
empirical findings. Additional experimentation is nevertheless
important to further mitigate external-validity threats.

VII. RELATED WORK

In this section, we position our work in the existing literature
on QA as studied by the RE and NLP communities.
QA in RE. There has been only limited research where QA
is applied for addressing RE problems. Existing works focus
on requirements traceability [15]–[17], identifying compliance
requirements [19], [71], and extracting information from on-
line forums [72]. These techniques are mostly IR-based, with
the exception of [19], which, like our approach, uses machine
reading comprehension (MRC). Our approach differs from
[19] both in its purpose and also in how it employs MRC.
First, whereas [19] focuses on QA over legal provisions (e.g.,
privacy regulations), our approach deals with QA over SRSs.
Second, [19] is limited in that it applies MRC to a-priori-
specified documents only. Our approach can, in contrast, mine
domain-related content from Wikipedia in an attempt to make

10

https://en.wikipedia.org/wiki/Rocket_mass_heater

tacit domain knowledge explicit and thereby handle questions
that would go unanswered if the scope of search for answers
was limited to the SRS under analysis only.

In terms of QA datasets, not many such datasets are avail-
able in RE. Abualhaija et al.’s dataset of 107 question-and-
answer pairs [19] is built over legal documents. In contrast,
our dataset, REQuestA, is built over SRSs. To our knowledge,
REQestA is the first dataset of its kind, providing a total of
387 question-and-answer pairs on industrial requirements.

Malviya et al. [18] investigate questions that requirements
engineers typically ask throughout the development process.
They collect through a survey with industry practitioners a set
of 159 questions, grouped into nine different categories such
as project management and quality assessment. Malviya et al.’s
questions are broad and can crosscut several artifacts in
the development life cycle. Our work focuses specifically
on clarification questions asked over SRSs and associated
domain-knowledge resources; our objective here is developing
automated QA technologies that can answer such questions.
QA in NLP. QA tasks in the NLP literature include question
classification, answer extraction, and question generation [73]–
[76]. Answer extraction is considered to be the main QA
task in NLP [77]. Recent advances in QA answer extraction
include fine-tuning large scale language models such as BERT,
RoBERTa, and ALBERT [78]–[81]. Inspired by the NLP liter-
ature, we apply in our work the QA models reported in a recent
QA benchmark [35]. Several existing QA datasets curated
from generic text are publicly available. These datasets include
SQuAD [21], GLUE [82], and TriviaQA [22]. There are also
some domain-specific datasets, e.g., for the medical [25] and
railway [27] domains. For the same reasons mentioned earlier
when discussing related work in RE, none of the available
datasets in NLP are suitable for our needs in this paper.

Language models have been employed for various text
generation tasks [64], including question generation (QG) [50],
[83]. QG models have enabled researchers in many fields to
automatically generate their own synthetic QA datasets [84]–
[87]. Our dataset was partially generated using QG. To our
knowledge, QG has not been attempted in RE before.

Our work is distinguished from QA research in NLP in that
we provide an end-to-end solution. Our approach covers all
QA steps starting from posing a question down to providing
the most relevant passages and potential answers. Foundational
research in NLP often focuses on individual QA steps, e.g.,
IR-based text retrieval or MRC-based answer extraction. Our
work does not contribute to the foundations for QA. Nev-
ertheless, our motivating use case (QA over requirements),
our combination of NLP technologies, the flexibility to build
domain-specific corpora and consult them during QA, and our
extensive empirical evaluation of QA in an RE context are, to
the best of our knowledge, new.

VIII. CONCLUSION

In this paper, we proposed QAssist – an AI-based question-
answering (QA) system to support the analysis of natural-
language requirements. Given a question, QAssist retrieves

relevant text passages from both the requirements document
being analyzed as well as an external source of domain
knowledge. QAssist further highlights the likely answer to
the question in each retrieved text passage. The flexibility to
incorporate an external knowledge source into the QA process
enables QAssist to answer otherwise unanswerable questions
related to the tacit domain information assumed by the re-
quirements. When a domain-knowledge resource is absent,
QAssist automatically builds one by mining Wikipedia articles,
using the terminology in the requirements being analyzed to
guide the mining process. To evaluate QAssist, we created
through third-party annotators a QA dataset, named REQuestA.
Both QAssist and REQuestA are publicly available [13]. Our
empirical results indicate that QAssist localizes the answer to
a posed question to three passages within the requirements
document and within the external domain-knowledge resource
with an average recall of 90.1% and 96.5%, respectively.
Narrowing the scope to these passages, QAssist has an average
accuracy of 84.2% in pinpointing the actual answer.

In future work, we would like to conduct user studies to
better understand how practitioners would interact with re-
quirements documents when equipped with a QA tool. Another
future direction is to experiment with emerging QA methods
in NLP that are capable of producing a “no answer” outcome
when a question is not answerable with sufficient accuracy.
Acknowledgements. This work was funded by Luxem-
bourg’s National Research Fund (FNR) under the grant
BRIDGES18/IS/12632261 and NSERC of Canada under the
Discovery and Discovery Accelerator programs. We are grate-
ful to the research and development team at QRA Corp. for
valuable insights and assistance.

REFERENCES

[1] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications, 1st ed. Wiley, 2009.

[2] K. Pohl, Requirements Engineering, 1st ed. Springer, 2010.
[3] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A. Ajagbe, E.-

V. Chioasca, and R. T. Batista-Navarro, “Natural language processing
(nlp) for requirements engineering: A systematic mapping study,” arXiv
preprint arXiv:2004.01099, 2020.

[4] A. Ferrari and A. Esuli, “An NLP approach for cross-domain ambiguity
detection in requirements engineering,” Automated Software Engineer-
ing, vol. 26, no. 3, 2019.

[5] S. Ezzini, S. Abualhaija, C. Arora, M. Sabetzadeh, and L. C. Briand,
“Using domain-specific corpora for improved handling of ambiguity in
requirements,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering, 2021.

[6] F. Dalpiaz, I. Schalk, and G. Lucassen, “Pinpointing ambiguity and
incompleteness in requirements engineering via information visualiza-
tion and NLP,” in Proceedings of the 24th Working Conference on
Requirements Engineering: Foundation for Software Quality, 2018.

[7] C. Arora, M. Sabetzadeh, and L. C. Briand, “An empirical study on
the potential usefulness of domain models for completeness checking
of requirements,” Empirical Software Engineering, vol. 24, no. 4, pp.
2509–2539, 2019.

[8] I. Hadar, A. Zamansky, and D. M. Berry, “The inconsistency between
theory and practice in managing inconsistency in requirements engineer-
ing,” Empirical Software Engineering, vol. 24, no. 6, pp. 3972–4005,
2019.

[9] D. Jurafsky and J. H. Martin, Speech and Language Processing, 3rd ed.,
2020, https://web.stanford.edu/∼jurafsky/slp3/(visited 2021-06-04).

11

https://web.stanford.edu/~jurafsky/slp3/

[10] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated extrac-
tion and clustering of requirements glossary terms,” IEEE Transactions
on Software Engineering, vol. 43, no. 10, 2017.

[11] S. Ezzini, S. Abualhaija, and M. Sabetzadeh, “Wikidominer: Wikipedia
domain-specific miner,” in Proceedings of the 17th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 2022.

[12] F. Zhu, W. Lei, C. Wang, J. Zheng, S. Poria, and T.-S. Chua, “Re-
trieving and reading: A comprehensive survey on open-domain question
answering,” arXiv preprint arXiv:2101.00774, 2021.

[13] “Replication package,” 2022. [Online]. Available: https://gitlab.uni.lu/
sezzini/QAssist/

[14] J. I. Maletic and M. L. Collard, “Tql: A query language to support
traceability,” in 2009 ICSE workshop on traceability in emerging forms
of software engineering. IEEE, 2009, pp. 16–20.

[15] P. Mäder and J. Cleland-Huang, “A visual language for modeling and
executing traceability queries,” Software & Systems Modeling, vol. 12,
no. 3, pp. 537–553, 2013.

[16] P. Pruski, S. Lohar, W. Goss, A. Rasin, and J. Cleland-Huang, “Tiqi:
answering unstructured natural language trace queries,” Requirements
Engineering, vol. 20, no. 3, pp. 215–232, 2015.

[17] J. Lin, Y. Liu, J. Guo, J. Cleland-Huang, W. Goss, W. Liu, S. Lohar,
N. Monaikul, and A. Rasin, “Tiqi: A natural language interface for
querying software project data,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 2017, pp. 973–
977.

[18] S. Malviya, M. Vierhauser, J. Cleland-Huang, and S. Ghaisas, “What
questions do requirements engineers ask?” in 2017 IEEE 25th Interna-
tional Requirements Engineering Conference. IEEE, 2017, pp. 100–109.

[19] S. Abualhaija, C. Arora, A. Sleimi, and L. Briand, “Automated question
answering for improved understanding of compliance requirements: A
multi-document study,” in In Proceedings of the 30th IEEE International
Requirements Engineering Conference, Melbourne, Australia 15-19 Au-
gust 2022, 2022.

[20] M. A. C. Soares and F. S. Parreiras, “A literature review on question
answering techniques, paradigms and systems,” Journal of King Saud
University-Computer and Information Sciences, vol. 32, no. 6, pp. 635–
646, 2020.

[21] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” arXiv preprint
arXiv:1606.05250, 2016.

[22] M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer, “Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension,”
arXiv preprint arXiv:1705.03551, 2017.

[23] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh,
C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee et al., “Natural
questions: a benchmark for question answering research,” Transactions
of the Association for Computational Linguistics, vol. 7, pp. 453–466,
2019.

[24] A. Pampari, P. Raghavan, J. Liang, and J. Peng, “emrqa: A large corpus
for question answering on electronic medical records,” in Proceedings
of the 2018 Conference on Empirical Methods in Natural Language
Processing, 2018, pp. 2357–2368.

[25] J. He, M. Fu, and M. Tu, “Applying deep matching networks to chinese
medical question answering: a study and a dataset,” BMC medical
informatics and decision making, vol. 19, no. 2, pp. 91–100, 2019.

[26] Y. Tian, W. Ma, F. Xia, and Y. Song, “Chimed: A chinese medical corpus
for question answering,” in Proceedings of the 18th BioNLP Workshop
and Shared Task, 2019, pp. 250–260.

[27] Z. Hu, “Research and implementation of railway technical specification
question answering system based on deep learning,” in 2020 IEEE
5th Information Technology and Mechatronics Engineering Conference
(ITOEC), 2020, pp. 5–9.

[28] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading Wikipedia
to answer open-domain questions,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, 2017, pp. 1870–1879.

[29] M. McGill and G. Salton, Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018.

[31] S. Liu, X. Zhang, S. Zhang, H. Wang, and W. Zhang, “Neural machine
reading comprehension: Methods and trends,” Applied Sciences, vol. 9,
no. 18, p. 3698, 2019.

[32] C. Manning, P. Raghavan, and H. Schutze, Introduction to Information
Retrieval, 1st ed. Cambridge University Press, 2008.

[33] K. S. Jones, “A statistical interpretation of term specificity and its
application in retrieval,” Journal of documentation, 1972.

[34] S. Robertson and H. Zaragoza, The probabilistic relevance framework:
BM25 and beyond. Now Publishers Inc, 2009.

[35] N. Thakur, N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych, “Beir:
A heterogenous benchmark for zero-shot evaluation of information
retrieval models,” arXiv preprint arXiv:2104.08663, 2021.

[36] R. Nogueira and K. Cho, “Passage re-ranking with bert,” arXiv preprint
arXiv:1901.04085, 2019.

[37] K. Wang, N. Thakur, N. Reimers, and I. Gurevych, “Gpl: Generative
pseudo labeling for unsupervised domain adaptation of dense retrieval,”
arXiv preprint arXiv:2112.07577, 2021.

[38] S. Zhuang and G. Zuccon, “Dealing with typos for bert-based passage
retrieval and ranking,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, 2021, pp. 2836–
2842.

[39] D. Chen and W.-t. Yih, “Open-domain question answering,” in Proceed-
ings of the 58th Annual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts. Online: Association for Computational
Linguistics, 2020, pp. 34–37.

[40] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[41] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[42] F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller,
and S. Riedel, “Language models as knowledge bases?” arXiv preprint
arXiv:1909.01066, 2019.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

[44] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-
training text encoders as discriminators rather than generators,” arXiv
preprint arXiv:2003.10555, 2020.

[45] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions,” arXiv preprint arXiv:1909.11942, 2019.

[46] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[47] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm:
Deep self-attention distillation for task-agnostic compression of pre-
trained transformers,” Advances in Neural Information Processing Sys-
tems, vol. 33, pp. 5776–5788, 2020.

[48] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[49] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, vol. 129, no. 6, pp.
1789–1819, 2021.

[50] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” 2019.

[51] D. Milne, O. Medelyan, and I. Witten, “Mining domain-specific
thesauri from wikipedia: A case study,” in Proceedings of the 5th
IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006
Main Conference Proceedings)(WI’06), 2006.

[52] G. Cui, Q. Lu, W. Li, and Y. Chen, “Corpus exploitation from Wikipedia
for ontology construction,” in Proceedings of the Sixth International
Conference on Language Resources and Evaluation (LREC’08). Mar-
rakech, Morocco: European Language Resources Association (ELRA),
May 2008.

[53] A. Ferrari, G. O. Spagnolo, and S. Gnesi, “Pure: A dataset of public re-
quirements documents,” in 2017 IEEE 25th International Requirements
Engineering Conference, 2017.

[54] K. Saxena, T. Singh, A. Patil, S. Sunkle, and V. Kulkarni, “Leveraging
Wikipedia navigational templates for curating domain-specific fuzzy
conceptual bases,” in Proceedings of the Second Workshop on Data
Science with Human in the Loop: Language Advances. Online:
Association for Computational Linguistics, Jun. 2021, pp. 1–7.

12

https://gitlab.uni.lu/sezzini/QAssist/
https://gitlab.uni.lu/sezzini/QAssist/

[55] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, and C. Willing, “Jupyter notebooks – a publishing
format for reproducible computational workflows,” in Positioning and
Power in Academic Publishing: Players, Agents and Agendas, 2016.

[56] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art
natural language processing,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demon-
strations. Association for Computational Linguistics, 2020.

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learn-
ing Research, vol. 12, pp. 2825–2830, 2011.

[58] B. Dorian, J. Sarthak, N. Vı́t, and nlp4whp, “dorianbrown/rank bm25,”
2022. [Online]. Available: https://doi.org/10.5281/zenodo.6106156

[59] N. Thakur, N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych,
“BEIR: A heterogeneous benchmark for zero-shot evaluation of informa-
tion retrieval models,” in Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[60] “Hugging face,” 2022. [Online]. Available: https://huggingface.co/
[61] J. Goldsmith, “The wikipedia libray,” 2022. [Online]. Available:

https://pypi.org/project/wikipedia/
[62] E. Loper and S. Bird, “Nltk: The natural language toolkit,” in Proceed-

ings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics,
2002.

[63] X. Du and C. Cardie, “Identifying where to focus in reading comprehen-
sion for neural question generation,” in Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing. Copen-
hagen, Denmark: Association for Computational Linguistics, 2017, pp.
2067–2073.

[64] L. Pan, W. Lei, T.-S. Chua, and M.-Y. Kan, “Recent advances in neural
question generation,” arXiv preprint arXiv:1905.08949, 2019.

[65] G. Miller, “WordNet: A lexical database for English,” Communications
of the ACM, vol. 38, no. 11, 1995.

[66] M. Hanna and O. Bojar, “A fine-grained analysis of BERTScore,” in
Proceedings of the Sixth Conference on Machine Translation. Online:
Association for Computational Linguistics, 2021, pp. 507–517.

[67] D. Ramage, A. N. Rafferty, and C. D. Manning, “Random walks for text
semantic similarity,” in Proceedings of the 2009 workshop on graph-
based methods for natural language processing (TextGraphs-4), 2009,
pp. 23–31.

[68] B. B. Cambazoglu, M. Sanderson, F. Scholer, and B. Croft, “A review of
public datasets in question answering research,” in ACM SIGIR Forum,
vol. 54, no. 2. ACM New York, NY, USA, 2021, pp. 1–23.

[69] J. S. Whissell and C. L. Clarke, “Improving document clustering using
okapi bm25 feature weighting,” Information retrieval, vol. 14, no. 5, pp.
466–487, 2011.

[70] J. Risch, T. Möller, J. Gutsch, and M. Pietsch, “Semantic answer
similarity for evaluating question answering models,” arXiv preprint
arXiv:2108.06130, 2021.

[71] A. Sleimi, M. Ceci, N. Sannier, M. Sabetzadeh, L. Briand, and J. Dann,
“A query system for extracting requirements-related information from

legal texts,” in 27th IEEE International Requirements Engineering
Conference. IEEE, 2019.

[72] G. M. Kanchev, P. K. Murukannaiah, A. K. Chopra, and P. Sawyer, “Ca-
nary: an interactive and query-based approach to extract requirements
from online forums,” in 2017 IEEE 25th International Requirements
Engineering Conference. IEEE, 2017, pp. 470–471.

[73] T. Hao, X. Li, Y. He, F. L. Wang, and Y. Qu, “Recent progress
in leveraging deep learning methods for question answering,” Neural
Computing and Applications, pp. 1–19, 2022.

[74] A. A. Yusuf, F. Chong, and M. Xianling, “An analysis of graph con-
volutional networks and recent datasets for visual question answering,”
Artificial Intelligence Review, pp. 1–24, 2022.

[75] H. Jin, Y. Luo, C. Gao, X. Tang, and P. Yuan, “Comqa: Question
answering over knowledge base via semantic matching,” IEEE Access,
vol. 7, pp. 75 235–75 246, 2019.

[76] D. Diefenbach, A. Both, K. Singh, and P. Maret, “Towards a question
answering system over the semantic web,” Semantic Web, vol. 11, no. 3,
pp. 421–439, 2020.

[77] B. Ojokoh and E. Adebisi, “A review of question answering systems,”
Journal of Web Engineering, vol. 17, no. 8, pp. 717–758, 2018.

[78] L. Jing, C. Gulcehre, J. Peurifoy, Y. Shen, M. Tegmark, M. Soljacic, and
Y. Bengio, “Gated orthogonal recurrent units: On learning to forget,”
Neural computation, vol. 31, no. 4, pp. 765–783, 2019.

[79] A. Wulamu, Z. Sun, Y. Xie, C. Xu, and A. Yang, “An improved end-to-
end memory network for qa tasks,” CMC-COMPUTERS MATERIALS
& CONTINUA, vol. 60, no. 3, pp. 1283–1295, 2019.

[80] Q. Ren, X. Cheng, and S. Su, “Multi-task learning with generative
adversarial training for multi-passage machine reading comprehension,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 05, 2020, pp. 8705–8712.

[81] T. Parshakova, F. Rameau, A. Serdega, I. S. Kweon, and D.-S. Kim, “La-
tent question interpretation through variational adaptation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 27,
no. 11, pp. 1713–1724, 2019.

[82] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“Glue: A multi-task benchmark and analysis platform for natural lan-
guage understanding,” arXiv preprint arXiv:1804.07461, 2018.

[83] V. Kumar, Y. Hua, G. Ramakrishnan, G. Qi, L. Gao, and Y.-F. Li,
“Difficulty-controllable multi-hop question generation from knowledge
graphs,” in International Semantic Web Conference. Springer, 2019,
pp. 382–398.

[84] N. F. Liu, T. Lee, R. Jia, and P. Liang, “Can small and synthetic
benchmarks drive modeling innovation? a retrospective study of question
answering modeling approaches,” arXiv preprint arXiv:2102.01065,
2021.

[85] M. Bartolo, T. Thrush, R. Jia, S. Riedel, P. Stenetorp, and D. Kiela, “Im-
proving question answering model robustness with synthetic adversarial
data generation,” arXiv preprint arXiv:2104.08678, 2021.

[86] A. D. Lelkes, V. Q. Tran, and C. Yu, “Quiz-style question generation
for news stories,” in Proceedings of the Web Conference 2021, 2021,
pp. 2501–2511.

[87] S. Gupta, A. Agarwal, M. Gaur, K. Roy, V. Narayanan, P. Kumaraguru,
and A. Sheth, “Learning to automate follow-up question generation using
process knowledge for depression triage on reddit posts,” arXiv preprint
arXiv:2205.13884, 2022.

13

https://doi.org/10.5281/zenodo.6106156
https://huggingface.co/
https://pypi.org/project/wikipedia/

	Introduction
	Background
	Approach
	Step 1: Document Retrieval
	Step 2: Splitting
	Step 3: Passage Retrieval
	Step 4: Answer Extraction

	Empirical Evaluation
	Research Questions (RQs)
	Implementation
	Data Collection Procedure
	Evaluation Procedure
	Answers to the RQs

	Comparison with Broad-based Search Engines
	Threats to Validity
	Related Work
	Conclusion
	References

