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Abstract. Single Instruction Multiple Data (SIMD) execution engines
like Intel’s Advanced Vector Extensions 2 (AVX2) offer a great potential
to accelerate elliptic curve cryptography compared to implementations
using only basic x64 instructions. All existing AVX2 implementations
of scalar multiplication on e.g. Curve25519 (and alternative curves) are
optimized for low latency. We argue in this paper that many real-world
applications, such as server-side SSL/TLS handshake processing, would
benefit more from throughput-optimized implementations than latency-
optimized ones. To support this argument, we introduce a throughput-
optimized AVX2 implementation of variable-base scalar multiplication
on Curve25519 and fixed-base scalar multiplication on Ed25519. Both
implementations perform four scalar multiplications in parallel, where
each uses a 64-bit element of a 256-bit vector. The field arithmetic is
based on a radix-229 representation of the field elements, which makes
it possible to carry out four parallel multiplications modulo a multiple
of p = 2255 − 19 in just 88 cycles on a Skylake CPU. Four variable-base
scalar multiplications on Curve25519 require less than 250,000 Skylake
cycles, which translates to a throughput of 32,318 scalar multiplications
per second at a clock frequency of 2 GHz. For comparison, the to-date
best latency-optimized AVX2 implementation has a throughput of some
21,000 scalar multiplications per second on the same Skylake CPU.

Keywords: Throughput-optimized cryptography · Curve25519 · Single
instruction multiple data (SIMD) · Advanced vector extension 2 (AVX2)

1 Introduction

Essentially any modern high-performance processor architecture supports vec-
tor instruction set extensions to enable parallel processing based on the Single
Instruction Multiple Data (SIMD) paradigm. Typical and well-known examples
of vector extensions include MMX, SSE, and AVX developed by Intel, AMD’s
3DNow, and the AltiVec instruction set for the PowerPC. Besides architectures
that target the personal computing and server markets, vector extensions have
also been integrated into instruction sets aimed at the embedded and mobile
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domain, e.g. ARM NEON. Taking Intel’s x86/x64 platform as a case study, the
evolution of vector extensions over the past 25 years can be briefly summarized
as follows. In 1997, Intel introduced the MMX extensions for the 32-bit x86
architecture, which initially supported operations on packed integers using the
eight 64-bit wide registers of the Floating-Point (FP) unit. Two years later, in
1999, Intel announced SSE, the first of a series of so-called Streaming SIMD
Extensions, enriching x86 by eight 128-bit registers (XMM0 to XMM7) and dozens
of new instructions to perform packed integer and FP arithmetic. Starting with
the Sandy Bridge microarchitecture (released in early 2011), Intel equipped its
x64 processors with AVX (Advanced Vector eXtensions), which added packed
FP instructions using sixteen 256-bit registers (YMM0 to YMM15). These registers
are organized in two 128-bit lanes, whereby the lower lanes are shared with the
corresponding 128-bit XMM registers. AVX2 appeared with Haswell in 2013 and
enhanced AVX to support new integer instructions that are capable to operate
on e.g. eight 32-bit elements, four 64-bit elements, or sixteen 16-bit elements in
parallel. The most recent incarnation of AVX is AVX-512, which augments the
execution environment of x64 by 32 registers of a length of 512 bits and various
new instructions. Consequently, the bitlength of SIMD registers increased from
64 to 512 over a period of just 20 years, and one can expect further expansions
in the future. For example, the recently introduced Scalable Vector Extension
(SVE) of ARM supports vectors of a length of up to 2048 bits1 [22], while the
RISC-V architecture can have vectors that are even 16,384 bits long [13].

Though originally designed to accelerate audio and video processing, SIMD
instruction sets like SSE and AVX turned out to be also beneficial for various
kinds of cryptographic algorithms [1, 21]. Using prime-field-based Elliptic Curve
Cryptography (ECC) as example, an implementer can take advantage of SIMD
parallelism to speed up (i) the field arithmetic by adding or multiplying several
limbs of field elements in parallel, (ii) the point addition/doubling by executing
e.g. two or four field operations in parallel, and (iii) a combination of both. The
latency of arithmetic operations in a large prime field can be reduced with the
help of SIMD instructions in a similar way as described in e.g. [6, 11, 12] for the
RSA algorithm and other public-key schemes. All these implementations have
in common that they employ the product-scanning method [14] in combination
with a “reduced-radix” representation (e.g. w = 28 bits per limb) to perform
multiple-precision multiplication in a 2-way parallel fashion, which means two
(w×w → 2w)-bit multiplications are carried out simultaneously. Also the point
arithmetic offers numerous possibilities for parallel execution. For example, the
so-called ladder-step of the Montgomery ladder for Montgomery curves [19] can
be implemented in a 2-way or 4-way parallel fashion, so that two or four field
operations are carried out in parallel, as described in e.g. [9, Algorithm 1] and
[15, Fig. 1] for AVX2. Scalar multiplication on twisted Edwards curves [4] can
be accelerated through parallel execution at the layer of the point arithmetic as
well. For example, 2-way and 4-way parallel implementations of point addition
and doubling were introduced in e.g. [5, 7, 10] and [8, 10, 16], respectively; these

1 SVE registers can be between 128 and 2048 bits long, in steps of 128 bits.
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execute either two or four field-arithmetic operations in parallel. Finally, there
are also a few implementations that combine parallelism at the field-arithmetic
and point-arithmetic layer, which can be characterized as (n ×m)-way parallel
implementations: they perform n field operations in parallel, whereby each field
operation is executed in an m-way parallel fashion and, thus, uses m elements
of a vector. For example, Faz-Hernández et al. developed a (2× 2)-way parallel
AVX2 implementation of scalar multiplication on Curve25519 and reported an
execution time of 121,000 Haswell cycles (or 99,400 Skylake cycles) [10]. Hisil et
al. presented very recently an AVX-512 implementation of Curve25519 that is
(4× 2)-way parallelized (i.e. four field operations in parallel, each of which uses
two 64-bit elements) and executes in only 74,368 Skylake cycles [15].

Benchmarking results reported in the recent literature indicate that parallel
implementations of Curve25519 do not scale very well when switching from one
generation of AVX to the next. While AVX-512 (in theory) doubles the amount
of parallelism compared to AVX2 (since it is capable to perform operations on
eight 64-bit elements instead of four), the concrete reduction in execution time
(i.e. latency) is much smaller, namely around 25% (74,368 vs. 99,400 Skylake
cycles [15]). This immediately raises the question of how an implementer can
exploit the massive parallelism of future SIMD extensions operating on vectors
that may be 2048 bits long, or even longer, given the modest gain achieved in
[15]. Going along with this “how” question is the “why” question, i.e. why are
fast implementations of e.g. Curve25519 needed, or, put differently, what kinds
of application demand a low-latency implementation of Curve25519. Unfortu-
nately, none of the papers mentioned in the previous paragraph identifies a use
case or a target application for their latency-optimized implementations. Since
many security protocols nowadays support Curve25519 (e.g. TLS 1.3), one can
argue that a fast implementation of Curve25519 reduces the overall handshake-
latency a TLS client experiences when connecting to a server. The main issue
with this reasoning is that transmitting the public keys over the Internet will
likely introduce an orders-of-magnitude higher latency than the computation
of the shared secret. Furthermore, given clock frequencies of 4 GHz, most users
will not recognize an execution-time reduction by a few 10,000 cycles. It could
now be argued that variable-base scalar multiplication is not only required on
the client side, but has to be performed also by the TLS server2. Indeed, TLS
servers of corporations like Google or Facebook may be confronted with several
10,000 TLS handshakes per second, and a faster Curve25519 implementation
will help them cope with such extreme workloads. However, what really counts
on the server side is not the latency of a single scalar multiplication, but the
throughput, i.e. how many scalar multiplications can be computed in a certain

2 The termination of SSL/TLS connections is often off-loaded to a so-called “reverse
proxy,” which transparently translates SSL/TLS sessions to normal TCP sessions
for back-end servers. The cryptographic performance of such reverse proxies can be
significantly improved with dedicated hardware accelerators. Jang et al. introduced
SSLShader, a SSL/TLS reverse proxy that uses a Graphics Processing Unit (GPU)
to increase the throughput of public-key cryptosystems like RSA [18].
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interval. Given this requirement, would it not make sense to optimize software
implementations of Curve25519 for maximum throughput instead of minimal
latency? What throughput can a throughput-optimized implementation achieve
compared to a latency-optimized implementation? Surprisingly, it seems these
questions have not yet been answered in the literature3.

In this paper we make a first step to answer these questions and introduce
a throughput-optimized AVX2 implementation of variable-base scalar multipli-
cation on Curve25519 and fixed-base scalar multiplication on Ed25519. Both
implementations perform (4× 1)-way parallel scalar multiplications; this means
they execute four scalar multiplications simultaneously in SIMD fashion, where
each can have a different scalar and, in the case of Curve25519, a different base
point. The point arithmetic and also the underlying field arithmetic operations
of each scalar multiplication use only a single 64-bit element of a 256-bit AVX2
vector. This “coarse-grained” form of parallelism has the advantage that it is
fairly easy to implement (by simply vectorizing a reduced-radix implementation
for a 32-bit processor), which simplifies the effort for formal verification of the
correctness of the software. In addition, we expect this approach to scale well
with increasing vector lengths; for example, migrating from AVX2 to AVX-512
should roughly double the throughput. Unlike most previous AVX2 implemen-
tations, we employ a radix-229 representation of the field elements (i.e. 29 bits
per limb), which turned out to be the best option for our (4 × 1)-way parallel
scalar multiplication when we analyzed different representations, including the
classical 25.5 bits-per-limb variant [2]. Our benchmarking results show that, on
a Skylake processor, four scalar multiplications can be performed in less than
250,000 clock cycles. For comparison, the to-date best latency-optimized AVX2
implementation needs over 374,000 Skylake cycles to execute four variable-base
scalar multiplications on Curve25519, which means our software achieves a 1.5
times higher throughput than the current leader in the low-latency domain.

2 The AVX2 Instruction Set

Intel’s Advanced Vector eXtension 2 (AVX2) is an x86 instruction set extension
for SIMD processing that supports packed integer operations on 256-bit wide
registers. AVX2 was announced in 2011 and first integrated into the Haswell
microarchitecture, which appeared in 2013. Besides the increased length of the
integer instructions, AVX2 also differs from the older AVX by the instruction
format (i.e. three operands instead of two). We performed our experiments on
Haswell and Skylake processors since both were used as reference platforms in
previous papers, e.g. [10, 20]. On both the Haswell and Skylake microarchitec-
ture, instructions (including AVX instructions) are fetched from the instruction
cache and decoded into micro-operations (micro-ops) by the “front end” of the

3 A throughput-optimized implementation of variable-base scalar multiplication on a
251-bit binary Edwards curve was presented by Bernstein [3]. This implementation
uses bitslicing for the low-level binary-field arithmetic and is able to execute 30,000
scalar multiplications per second on an Intel Core 2 Quad Q6600 CPU.
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core. These micro-ops are stored in a buffer and will be assigned to available
execution ports by the superscalar execution engine. The execution engine can
issue micro-ops in an out-of-order fashion, i.e. the order in which the micro-ops
are executed is not (necessarily) the order in which they were decoded. This is
because micro-ops can leave the buffer and get issued to a suitable execution
port as soon as their input-operands are available, even if there are still some
older micro-ops in the buffer, which helps to improve processing efficiency. Both
the Haswell and the Skylake microarchitecture have a total of eight execution
ports (i.e. port 0 to port 7), whereby micro-ops of vector ALU instructions are
issued to execution units through port 0, 1, and 5. Memory accesses (i.e. loads
and stores) are issued through port 2, 3, 4, and 7, while port 6 handles various
kinds of branches. Haswell and Skylake differ regarding the capabilities of the
AVX2-related ports (i.e. port 0, 1, 5) and execution engines. Taking the AVX2
instructions VPMULUDQ, VPADDQ, and VPAND as example, these differences can be
summarized as follows:

– VPMULUDQ: port 0 on Haswell; port 0 and 1 on Skylake
– VPADDQ: port 1 and 5 on Haswell; port 0, 1, and 5 on Skylake
– VPAND: port 0, 1, and 5 on Haswell; port 0, 1, and 5 on Skylake

The micro-ops of the AVX2 vector multiply instruction VPMULUDQ can be issued
through two ports on a Skylake CPU, but only one port on a Haswell CPU. As
a consequence, the throughput of VPMULUDQ differs for these two platforms; it is
one instruction/cycle on Haswell, but two instructions/cycle on Skylake.

The operands used by the AVX2 ALU instructions have to be stored in the
256-bit YMM vector registers, whereby, depending on the concrete instruction, the
two operands are interpreted as vectors consisting of e.g. four 64-bit elements
or eight 32-bit elements. Depending on the microarchitecture, several (or even
all) operations on the 32 or 64-bit elements are executed in parallel. Similar to
other vector units, AVX2 does not support “widening” multiplication, i.e. when
using VPMULUDQ to multiply vectors of four unsigned 64-bit integers, each of the
four products has a length of 64 bits. This, in turn, restricts the length of the
limbs of a multiple-precision integer to 32 bits, or even less (e.g. 25–30 bits) in
the case of a reduced-radix representation.

3 Vectorized Prime-Field Arithmetic

This section describes our (4 × 1)-way parallel implementation of arithmetic in
Fp where p = 2255 − 19. We first introduce the notion of a limb vector set and
explain the rationale of its radix-229 representation. Afterward, we demonstrate
how limb vector sets can be used to implement (4× 1)-way field operations.

3.1 Radix-229 Limb Vector Set

The literature contains numerous discussions on how to represent the elements
of the 255-bit prime field Fp used by Curve25519, whereby the bottom line was



6 H. Cheng et al.

always that the choice of the number representation radix is determined by the
characteristics of the target platform [10, 15, 17]. A well-known and widely-used
choice is the radix-225.5 representation originally proposed in [2], which means
a 255-bit integer consists of ten limbs; five are 25 bits long, while the other five
have a length of 26 bits. More formally, a field element f is given as

f = f0+226f1+251f2+277f3+2102f4+2128f5+2153f6+2179f7+2204f8+2230f9,

where 0 ≤ f2j < 226 and 0 ≤ f2j+1 < 225 for 0 ≤ j ≤ 4. This representation is
attractive because it allows implementers to efficiently integrate the reduction
modulo p = 2255 − 19 into the multiplication due to the fact that 19fi still fits
in a 32-bit integer. In this way, it is possible to delay the propagation of excess
bits (often called “carries”) from one limb to the next-higher limb until the end
of the modular multiplication, which is beneficial since these propagations are
highly sequential and, thus, relatively slow on modern CPUs. For example, the
(2× 2)-way parallel AVX2 implementation for Curve25519 described in [9] uses
a radix of 225.5 to combine the reduction operation with the multiplication.

A number representation that enables low latency for a (2× 2)-way parallel
implementation is not necessarily the best choice when high throughout is the
main goal. Considering our (4× 1)-way strategy and the processing capabilities
of the AVX2 engine of Haswell/Skylake, we opted for a radix-229 representation
of the field elements, which means any f ∈ Fp consists of nine 29-bit limbs:

f = f0 + 229f1 + 258f2 + 287f3 + 2116f4 + 2145f5 + 2174f6 + 2203f7 + 2232f8,

where 0 ≤ fi < 229 for 0 ≤ i ≤ 8. Our implementation performs all arithmetic
operations modulo q = 26p = 64(2255 − 19) = 2261 − 1216 instead of the prime
p = 2255 − 19. A benefit of this representation is the smaller number of limbs
compared to the radix-225.5 approach, which usually4 implies that fewer limb-
multiplications have to be carried out when multiplying two field elements. The
main drawback is a higher number of excess-bit (i.e. carry) propagations since
the reduction modulo q can only be done after the multiplication. However, we
found through a number of experiments that, on both Haswell and Skylake, the
advantage of fewer limbs outweighs the additional carry propagations.

The main data structure of our (4× 1)-way parallel software is what we call
a limb vector set. Given e, f, g, h ∈ Fp, a limb vector set V is defined as:

V = [e, f, g, h] =
[ 8∑

i=0

229iei,

8∑
i=0

229ifi,

8∑
i=0

229igi,

8∑
i=0

229ihi

]
=

8∑
i=0

229i[ei, fi, gi, hi] =

8∑
i=0

229ivi with vi = [ei, fi, gi, hi]. (1)

4 A (2× 2)-way parallel AVX2 implementation (i.e. an implementation executing two
field operations in parallel, each using two 64-bit elements of a 256-bit vector) can
not profit from a radix-229 representation since the limbs are processed in pairs and
the number of limb-pairs is the same as for radix 225.5, namely five.
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Fig. 1. Limb vector set V representing the four operands e, f, g, h ∈ Fp (there are nine
limb vectors vi, each of which contains four 29-bit limbs).

In essence, a limb vector set V consists of nine limb vectors vi, each of which
contains four 29-bit limbs. However, it is important to note that the four limbs
in vi come from four different field-elements and have the same index i, i.e. the
least-significant limb vector v0 contains the least-significant limbs of e, f, g, h ∈
Fp, namely e0, f0, g0, and h0, while v8 contains the four most-significant limbs
of e, f , g, and h. In general, the number of limbs per limb vector is determined
by the number of elements in a vector of the underlying SIMD engine (four in
our case), whereas the number of limb vectors in a limb vector set depends on
the bit-length of the prime and the representation radix. Figure 1 shows the
structure of an element vector set V for AVX2, where the 29-bit limbs are in
four coloured rows (depicting four field-elements), and each column represents
a limb vector vi. The exact bit position of a 29-bit limb within a 256-bit AVX2
vector is given on the right of the column of v8; concretely, the four limbs are
placed at the bit positions from 64i to 64i + 28 for 0 ≤ i ≤ 3. Even though the
radix-229 representation does not permit the integration of modular reduction
into the multiplication, it provides sufficient “headroom” (namely three bits) to
delay the carry propagation of certain operations like the field-addition.

Our representation of operands for high-throughput arithmetic for ECC is
similar to the “bit-sliced” and “byte-sliced” representations used in symmetric
cryptography (e.g. for DES or AES) to improve the throughput at the expense
of latency. Thus, our approach could be referred to as “limb-slicing.”

3.2 AVX2 Implementation of Field-Operations

All inputs to the field-operations described in the following are limb vector sets
with limbs that are 29 long or slightly longer. As already explained before, the
arithmetic operations are performed modulo q = 64p = 2261 − 1216 and not the
actual prime p (except at the very end of a scalar multiplication). An operand
can, therefore, be up to 261 bits long. Simplified C source code of some of the
(4× 1)-way parallel field-operations can be found in Appendix A (except of the
(4× 1)-way field-multiplication, which is already given in this subsection).
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Addition. The vectorized addition R = A + B is implemented in a straight-
forward way, which means nine VPADDQ instructions are executed to obtain the
limb-sums ri = ai + bi for 0 ≤ i ≤ 8. We neither propagate the carries from
less-significant to more-significant limb-vectors, nor do we perform a reduction
modulo q. Thus, each limb of the sum vector set R can be one bit longer than
the corresponding limbs of the operands A and B.

Subtraction. Computing the subtraction in the usual way as R = A−B can
yield negative limbs and also negative final results; therefore, we implemented
the subtraction using the equation R = 2Q + A−B, whereby the limb-vectors
of 2Q have the form 2qi, i.e. the limbs are 30 bits long. The limbs of the final
result R can be up to 31 bits long, which means they may cause an overflow in
the subsequent field-operation (e.g. when the result is used as input of a field-
squaring). Therefore, we implemented an alternative version of the subtraction
that includes both a carry propagation to obtain 29-bit limbs and a reduction
modulo q, which is performed in the usual way (taking 2261 ≡ 1216 mod q into
account). The baseline version of the subtraction is very similar to the addition
(see above) and executes nine VPADDQ and VPSUBQ instructions, respectively. On
the other hand, the second version of the subtraction is much more costly due
to the sequential carry propagation; thus, we use it only when necessary.

Multiplication. Multiplication is (apart from inversion) the most costly field-
operation and has a significant impact on the performance of any elliptic-curve
cryptosystem. Our AVX2 implementation aims at maximizing instruction-level
parallelism by optimizing the port utilization, such that as many micro-ops as
possible can be executed simultaneously. However, achieving optimal utilization
of ports (and execution units) is not always possible due to inherent sequential
dependencies, e.g. when an instruction uses the result of another instruction as
operand, or when an instruction has to wait for an operand to be loaded from
RAM. But a smart combination of arithmetic algorithms and implementation
options can reduce these dependencies, e.g. reduced-radix product scanning is
better suited for AVX2 than full-radix operand scanning. Special attention has
to paid to the modular reduction and the carry propagation (i.e. conversion
to 29-bit limbs) since some sequential dependencies are unavoidable in these
operations. In some cases, the length of a dependency chain can be shortened
with the help of additional instructions. All this makes finding a multiplication
strategy that schedules the instruction sequence to fully exploit the platform’s
parallel processing capabilities a highly challenging task.

Taking into account the different latency and throughput properties of the
relevant AVX2 instructions, we carried out experiments with a dozen variants
of modular multiplication; all of them use product-scanning [14] in combination
with a reduced-radix representation, but they differ in the following aspects:

1. Whether the reduction modulo q is separated from or interleaved with the
multiplication (and, in the latter case, how it is interleaved).
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1 #include <immintrin.h>
2 #define VADD(X,Y) _mm256_add_epi64(X,Y) /* VPADDQ */
3 #define VMUL(X,Y) _mm256_mul_epu32(X,Y) /* VPMULUDQ */
4 #define VAND(X,Y) _mm256_and_si256(X,Y) /* VPAND */
5 #define VSRL(X,Y) _mm256_srli_epi64(X,Y) /* VPSRLQ */
6 #define VBCAST(X) _mm256_set1_epi64x(X) /* VPBROADCASTQ */
7 #define MASK29 0x1fffffff /* mask of 29 LSBs */
8

9 void gfp_mul(__m256i *r, const __m256i *a, const __m256i *b)
10 {
11 int i, j, k; __m256i t[9], accu;
12

13 /* 1st loop of the product -scanning multiplication */
14 for (i = 0; i < 9; i++) {
15 t[i] = VBCAST(0);
16 for(j = 0, k = i; k >= 0; j++, k--)
17 t[i] = VADD(t[i], VMUL(a[j], b[k]));
18 }
19 accu = VSRL(t[8], 29);
20 t[8] = VAND(t[8], VBCAST(MASK29));
21

22 /* 2nd loop of the product -scanning multiplication */
23 for (i = 9; i < 17; i++) {
24 for (j = i-8, k = 8; j < 9; j++, k--)
25 accu = VADD(accu , VMUL(a[j], b[k]));
26 r[i-9] = VAND(accu , VBCAST(MASK29));
27 accu = VSRL(accu , 29);
28 }
29 r[8] = accu;
30

31 /* modulo reduction and conversion to 29-bit limbs */
32 accu = VBCAST(0);
33 for (i = 0; i < 9; i++) {
34 accu = VADD(accu , VMUL(r[i], VBCAST(64*19))));
35 accu = VADD(accu , t[i]);
36 r[i] = VAND(accu , VBCAST(MASK29));
37 accu = VSRL(accu , 29);
38 }
39

40 /* limbs in r[0] can finally be up to 30 bits long */
41 r[0] = VADD(r[0], VMUL(accu , VBCAST(64*19)));
42 }

Listing 1. Simplified C source code for (4× 1)-way field-multiplication.

2. In which way the carry propagation is performed.
3. Whether and how intermediate values are stored in local variables.

We benchmarked all 12 variants (including one based on the radix-225.5 repre-
sentation from [2]) on Haswell and Skylake, and found that the version shown in
Listing 1 is the fastest one. This source code implements a (4× 1)-way parallel
field-multiplication, whereby the reduction modulo q (third loop) is performed
separately after the product-scanning multiplication (first two loops). The local
array t serves as storage for the intermediate results (i.e. column sums) of the
first loop; these sums must not exceed 64 bits so as to prevent overflow. In the
second loop, the carries are propagated to obtain the column sums in the form
of 29-bit limbs (stored in array r) since this simplifies the subsequent reduction
operation. The reduction of the product modulo q is done in the conventional
way (i.e. by using 2261 ≡ 1216 mod q) and combined with a carry propagation
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A

B
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0 1 2 3 4 5 6 7 8

×

0 1 2 3 4 5 6 7 8 9 1011121314151617

T ‖ R

modq
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R

Fig. 2. (4× 1)-way field-multiplication (A, B, T , and R are limb vector sets).

to get the final result in 29-bit limbs. Consequently, the modular multiplication
involves two carry propagations altogether. Figure 2 illustrates our vectorized
modular multiplication and shows the limb-length of all 18 column sums of the
product AB; these sums are stored in the limb vector set T (lower half of the
product) and R (upper half), which correspond to t and r in Listing 1.

An important aspect when choosing a number-representation radix for the
product-scanning method is to ensure that the column sums will never become
longer than 64 bits so as to prevent overflows. The impossibility of overflows is
fairly easy to show when all limbs of the two operands are 29 bits long. In this
case, a limb-product consists of 58 bits, and the maximum length of a column
sum is 62 bits. The biggest column sum is t8, which is computed as follows.

t8 = a0b8 + a1b7 + a2b6 + a3b5 + a4b4 + a5b3 + a6b2 + a7b1 + a8b0

During the execution of the reduction loop (line 34 to 37 of Listing 1), the sum
of t7, the product 1216r7, and the carry of the previous iteration (in accu) is
computed. This sum can not overflow a 64-bit element of an AVX2 vector since
the carry can be at most 64− 29 = 35 bits long, and r7 has a length of 29 bits
(i.e. the length of 1216r7 is at most 40 bits). It is worth noting that overflows
are not possible even when the limbs of the operands are slightly longer than
29 bits. To give a concrete example, let us assume operand A and B are the
result of a field-addition and a field-subtraction, respectively. In this case, the
limbs are bounded by ai < 2 · 229 ≤ 230 and bi < 3 · 229 < 230.59, which implies
t8 < 263.76 (i.e. t8 fits in a 64-bit element of an AVX2 vector). Consequently, an
overflow is not possible, neither in the multiplication nor in the reduction.

Squaring. Our implementation of squaring R = A2 mod Q exploits the usual
“shortcut” of computing limb-products of the form aiaj with i 6= j once and
doubling them by a left-shift. Apart from that, we applied similar optimization
strategies with respect to carry propagation and reduction as outlined above.
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4 (4× 1)-Way Parallel Scalar Multiplication

An ephemeral ECDH key exchange requires both variable-base and fixed-base
scalar multiplication; the latter to generate a key pair and the former to obtain
the shared secret. Our implementation adopts Curve25519 for the computation
of shared secrets and Ed25519 to generate key pairs, whereby the public keys
need to be mapped to Curve25519. Both scalar multiplications are vectorized in
a (4 × 1)-way parallel fashion, i.e. four scalar multiplications are carried out in
parallel, whereby they can use four different scalars (and also four different base
points in the variable-base setting).

4.1 Variable-Base Scalar Multiplication

The Montgomery ladder [19] is the standard way to implement a variable-base
scalar multiplication kP on Curve25519. For each bit of the scalar k, a so-called
ladder step is performed, which mainly consists of a differential point addition
and a point doubling; both operations can be carried out with the (projective)
X and Z coordinate only (i.e. the Y coordinate is not needed). The ladder has
constant run-time since each step executes a fixed instruction sequence.

Point Vector Set. A point vector set consists of several limb vector sets (one
for each coordinate), which represents always four points, corresponding to the
number of limbs in a limb vector set. For example, a point vector set in affine
coordinates for the four points A = (xA, yA), B = (xB , yB), C = (xC , yC), and
D = (xD, yD) can be written as

P = [A,B,C,D] = [(xA, yA), (xB , yB), (xC , yC), (xD, yD)] =

= ([xA, xB , xC , xD], [yA, yB , yC , yD]) = (xP ,yP).

That is, P consists of the two limb vector sets xP and yP ; the former contains
the four x-coordinates of A, B, C, D, and the latter the four y-coordinates. In
the case of projective coordinates, P has the form P = (XP ,YP ,ZP).

(4 × 1)-Way Montgomery Ladder. The normal ladder-step operation gets
the (projective) X and Z coordinate of two points P and Q as input, plus the
affine x-coordinate xQP of the difference Q− P of the points (which actually is
a public key). It outputs two points P ′ and Q′ whose difference Q′ −P ′ has the
same affine x-coordinate as Q − P . However, our (4 × 1)-way implementation
of the ladder step operates on point vector sets instead of ordinary points. To
simplify the explanation, we write the conventional Montgomery ladder step as
(P ′, Q′) ← LStep(P,Q, xQP ), and, analogously, the (4 × 1)-way ladder step as
(P ′,Q′)← ParLStep(P ,Q,xQP). We suppose that the two point vector sets
P and Q represent the points A,B,C,D and E,F,G,H, respectively, whereas
the limb vector set xQP represents the field-elements xEA, xFB , xGC , xHD, all
of which are affine x-coordinates of differences of two points (these coordinates
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Op. ParLStep Instance 0 Instance 1 Instance 2 Instance 3

1 T ←XP + ZP s← XA + ZA t← XB + ZB u← XC + ZC v ← XD + ZD

2 XP ←XP −ZP XA ← XA − ZA XB ← XB − ZB XC ← XC − ZC XD ← XD − ZD

3 T ′ ←XQ + ZQ s′ ← XE + ZE t′ ← XF + ZF u′ ← XG + ZG v′ ← XH + ZH

4 XQ ←XQ −ZQ XE ← XE − ZE XF ← XF − ZF XG ← XG − ZG XH ← XH − ZH

5 ZP ← T 2 XA ← s2 XB ← t2 XC ← u2 XD ← v2

6 ZQ ← T ′ ×XP ZE ← s′ ×XA ZF ← t′ ×XB ZG ← u′ ×XC ZH ← v′ ×XD

7 T ′ ←XQ × T s′ ← XE × s t′ ← XF × t u′ ← XG × u v′ ← XH × v

8 T ←XP
2 s← XA

2 t← XB
2 u← XC

2 v ← XD
2

9 XP ← ZP × T XA ← ZA × s XB ← ZB × t XC ← ZC × u XD ← ZD × v

10 T ← ZP − T s← ZA − s t← ZB − t u← ZC − u v ← ZD − v

11 XQ ← T × a24 XE ← s× a24 XF ← t× a24 XG ← u× a24 XH ← v × a24

12 XQ ←XQ + ZP XE ← XE + ZA XF ← XF + ZB XG ← XG + ZC XH ← XH + ZD

13 ZP ←XQ × T ZA ← XE × s ZB ← XF × t ZC ← XG × u ZD ← XH × v

14 T ← T ′ + ZQ s← s′ + ZE t← t′ + ZF u← u′ + ZG v ← v′ + ZH

15 XQ ← T 2 XE ← s2 XF ← t2 XG ← u2 XH ← v2

16 T ← T ′ −ZQ s← s′ − ZE t← t′ − ZF u← u′ − ZG v ← v′ − ZH

17 T ′ ← T 2 s′ ← s2 t′ ← t2 u′ ← u2 v′ ← v2

18 ZQ ← T ′ × xQP ZE ← s′ × xEA ZF ← t′ × xFB ZG ← u′ × xGC ZH ← v′ × xHD

Fig. 3. (4 × 1)-way parallel Montgomery ladder step. This implementation works “in
place” and updates the input P,Q with the output P′,Q′. The subtractions at step
2 and 16 require a reduction and conversion of the result to 29-bit limbs.

are, in fact, public keys). The relation between ParLStep and LStep can be
formally described as follows:

ParLStep(P ,Q,xQP) =

ParLStep([A,B,C,D], [E,F,G,H], [xEA, xFB , xGC , xHD]) =

[LStep(A,E, xEA),LStep(B,F, xFB),LStep(C,G, xGC),LStep(D,H, xHD)]

ParLStep consists of four LStep operations, which are carried out in parallel
and execute (besides other operations) five (4 × 1)-way field-multiplications as
well as four (4 × 1)-way field-squarings. Figure 3 illustrates the exact sequence
of field-operations for each of the four parallel LStep instances. There are two
temporary limb vector sets T = [s, t, u, v] and T ′ = [s′, t′, u′, v′] involved in the
computation, and also the limb vector a24 = [a24, a24, a24, a24], which contains
four times the curve constant a24 = (A− 2)/4 = 121665.

4.2 Fixed-Base Scalar Multiplication

The fixed-base scalar multiplication R = kG is performed on Ed25519, which is
a twisted Edwards curve that is birationally equivalent to Curve25519 [5]. The
generator G has the form (x, 4/5) (corresponding to the generator G = (9, y) on
Curve25519) and the scalar k is a 255-bit integer. This scalar can be written as∑63

i=0 16iki where ki ∈ {−8,−7, . . . , 6, 7} and R = kG computed via

R =

63∑
i=0

ki · 16iG. (2)
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Since the point G is fixed, it is possible to speed up the scalar multiplication
with the help of a pre-computed look-up table as demonstrated in e.g. [5]. The
table contains the eight multiples 16iG, 2 · 16iG, . . . , 8 · 16iG for each of the
64 points of the form 16iG, which amounts to 512 points altogether. One can
efficiently obtain ki · 16iG by first loading the point |ki| · 16iG from the table
and then negating it when ki < 0. Both the table look-up and the conditional
negation can be implemented in such a way that they do not leak information
about the secret scalar in a timing attack; see [5] for details. It is also possible
to reduce the size of the look-up table by splitting Eq. (2) into two parts:

R =

31∑
i=0

k2i · 162iG + 16 ·
31∑
i=0

k2i+1 · 162iG. (3)

In this way, the size of the look-up table is reduced from 64× 8 = 512 points to
32× 8 = 256 points at the expense of four point doublings. The full cost of the
fixed-base scalar multiplication according to Eq. (3) amounts to 64 table look-
ups, 64 point additions, and four point doublings. Our AVX2 implementation
uses this method and performs four scalar multiplications in parallel via

R =

31∑
i=0

k2i · 162iG + 16 ·
31∑
i=0

k2i+1 · 162iG, (4)

where G = [G,G,G,G], i.e. each instance uses the same generator. The table
in our software does not need to be a vectorized table containing four duplicate
entries. Instead, we use a normal table to load the four points corresponding to
nibbles of the four scalars and generate a point vector set with them.

Look-Up Table. As mentioned above, the pre-computed look-up table holds
256 points in total, all of which are multiples of the fixed generator G. We use
a full-radix representation instead of the radix-229 representation for the points
in the table, i.e. the limbs of the coordinates are 32 bits long. Furthermore, we
store the points in extended affine coordinates of the form (u, v, w) where

u = (x + y)/2, v = (y − x)/2, w = dxy,

and d is a parameter of the twisted Edwards curve [5]. Hence, each coordinate
occupies 32 bytes in the table and a point has a size of 96 bytes. The total size
of the look-up table is roughly 24 kB. Representing the pre-computed points in
extended projective coordinates allows one to use the highly-efficient formulae
for mixed point addition presented in [16]. In order to resist timing attacks, all
eight points of each set of the form { 162iG, 2 · 162iG, . . . , 8 · 162iG } need to be
loaded from the table and the desired point has to obtained through arithmetic
(resp. logical) operations as described in [5]. However, our (4 × 1)-way parallel
software actually obtains four points, one for each of the four scalars. Once the
four points have been extracted, a point vector set is generated, which includes
a conversion of coordinates from full-radix to reduced-radix representation.
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Table 1. Execution time (in cycles) of (4× 1)-way field and point operations.

Faz-H. et al. [10] This work
Domain Operation

Haswell Skylake Haswell Skylake

Prime field Fp

Addition 12 12 11 11
Basic subtraction n/a n/a 14 12
Mod. subtraction n/a n/a 32 31
Mod. multiplication 159 105 122 88
Mod. squaring 114 85 87 65

Twisted Edwards
Point addition 1096 833 965 705

curve
Point doubling n/a n/a 830 624
Table query 208 201 218 205

Montgomery curve Ladder step n/a n/a 1118 818

(4× 1)-Way Point Operations. A (4× 1)-way parallel scalar multiplication
in the fixed-base setting consists of three kinds of operation: table query, mixed
point addition, and point doubling. The latter two operate on point vector sets
and execute four instances in parallel, using the AVX2 implementations of the
field arithmetic. All three operations have in common that they do not perform
any secret-dependent memory accesses or branches, which makes our software
highly resistant against timing attacks. The C source code of the point addition
and point doubling can be found in Appendix B.

5 Performance Evaluation and Comparison

We measured the execution time of our software on two 64-bit Intel processors
that come with an AVX2 engine; the first is a Core i7-4710HQ Haswell clocked
with a clock frequency of 2.5 GHz, and the second is a Core i5-6360U Skylake
clocked at 2.0 GHz. The source codes were compiled with Clang version 10.0.0
on both processors, using optimization level O2. We disabled turbo boost and
hyper-threading during the performance measurements.

Table 1 shows the latency of our (4 × 1)-way parallel arithmetic operations
in the prime field and on the two curves, and compares them with the (4 × 1)-
way operations reported by Faz-Hernández et al. in [10]. They implemented the
modular multiplication based on a number representation radix of 225.5 so as
to minimize the carry propagation. However, according to the results given in
Table 1, our 29-bits-per-limb multiplication outperforms [10] by 37 clock cycles
on Haswell and 17 cycles on Skylake, despite the drawback of requiring more
carry propagations. Also our squaring is faster than that from [10], and these
gains at the field arithmetic translate to faster point arithmetic; e.g. they make
point addition on Ed25519 exactly 101 cycles faster on Haswell and 135 cycles
faster on Skylake. We also benchmarked point operations on Curve25519; the
ladder step takes 1118 cycles on Haswell and 300 cycles less on Skylake.
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Table 2. Latency and throughput of our AVX2 software on a Haswell i7-4710HQ and
a Skylake i5-6360U CPU (latency is the execution time of four parallel instances).

Platform
CPU Keypair generation Shared secret

Frequency Latency Throughput Latency Throughput

Haswell 2.5 GHz 104,579 cycles 95,568 ops/sec 329,455 cycles 30,336 ops/sec

Skylake 2.0 GHz 80,249 cycles 99,363 ops/sec 246,636 cycles 32,318 ops/sec

Table 2 shows the performance of our (4 × 1)-way parallel implementation
of keypair generation (i.e. fixed-base scalar multiplication on Ed25519) and the
computation of shared secret keys (i.e. variable-base scalar multiplication on
Curve25519). The latency figures represent the execution time of four parallel
scalar multiplications; for example, computing four variable-base scalar multi-
plications takes 246.6 k cycles on Skylake. Thanks to a 24 kB look-up table, the
generation of keypairs is (on both platforms) over three times faster than the
computation of shared secrets. Regarding throughput, our software is able to
compute 95 k keypairs or 30 k shared secrets on a 2.5 GHz Haswell CPU. When
clocked with the same frequency, a Skylake CPU running our software reaches
a 30% higher throughout than a Haswell CPU.

Table 3. Comparison of AVX2 implementations of Curve25519 on Haswell CPUs (all
throughput figures are scaled to a common clock frequency of 2.5 GHz).

Ref. Impl. CPU Compiler
Keypair generation Shared secret

Latency Throughput Latency Throughput
[cycles] [ops/sec] [cycles] [ops/sec]

Faz-H. (2× 2)-way i7-4770 Clang 5.0.2 43,700 57,208† 121,000 20,661†

[10] (2× 2)-way i7-4710HQ Clang 10.0 41,938 59,575 121,499 20,563

Nath (4× 1)-way i7-6500U GCC 7.3.0 100,127 24,968† 120,108 20,815†

[20] (4× 1)-way i7-4710HQ GCC 8.4.0 100,669 24,820 120,847 20,676

This (4× 1)-way i7-4710HQ Clang 10.0 104,579? 95,568 329,455? 30,336
work +60.4% +45.7%

† Reference [10] and [20] do not give throughput results. Therefore, we list the theoretical
throughput obtained by dividing the frequency of 2.5 GHz by the latency (in cycles).
? The latency of our implementation is the execution time of four parallel instances.

Table 3 compares our results with that of two other AVX2 implementations
of Curve25519 on the Haswell microarchitecture. In order to reduce (as much as
possible) the impact of different compilers and different CPUs, we downloaded
and compiled the source code of [10] and [20] in our own experimental environ-
ment and measured the corresponding performance data. The results given in
Table 3 include both our own measurements and the results which the authors
reported in the respective papers. The former are easy to identify in the table
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Table 4. Comparison of AVX2 implementations of Curve25519 on Skylake CPUs (all
throughput figures are scaled to a common clock frequency of 2.0 GHz).

Ref. Impl. CPU Compiler
Keypair generation Shared secret

Latency Throughput Latency Throughput
[cycles] [ops/sec] [cycles] [ops/sec]

Faz-H. (2× 2)-way i7-6700K Clang 5.0.2 34,500 57,971‡ 99,400 20,150‡

[10] (2× 2)-way i5-6360U Clang 10.0 35,629 55,955 95,129 20,939

Hisil (4× 1)-way i9-7900X GCC 5.4 n/a n/a 98,484 20,308†

[15] (4× 1)-way i5-6360U GCC 8.4.0 n/a n/a 116,595 16,656

Nath (4× 1)-way i7-6500U GCC 7.3.0 84,047 23,796† 95,437 20,956†

[20] (4× 1)-way i5-6360U GCC 8.4.0 82,054 24,406 93,657 21,168

This (4× 1)-way i5-6360U Clang 10.0 80,249? 99,363 246,636? 32,318
work +71.4% +52.7%

† Reference [15] and [20] do not give throughput results. Therefore, we list the theoretical
throughput obtained by dividing the frequency of 2.0 GHz by the latency (in cycles).
‡ Reference [10] provides throughput results for a 3.6 GHz CPU. We list the theoretical
throughput obtained by scaling the reported throughput with a factor of 2/3.6 = 1/1.8
to facilitate an intuitive comparison of the results.
? The latency of our implementation is the execution time of four parallel instances.

because we used more recent versions of the compiler (GCC or Clang) and also
a newer Haswell CPU for benchmarking. We tried to compile Nath et al.’s code
with Clang version 10.0.0, but the performance was worse than that reported
in [20]. A possible explanation might be that Nath et al. “tuned” their source
code specifically for the capabilities of GCC, which often comes at the expense
of sub-optimal performance when using a different compiler. In order to ensure
a fair comparison, we compiled their source code with the most recent version
of GCC, namely GCC 8.4.0 (released in March 2020). Since throughput figures
depend on the clock frequency of the CPU, we “normalized” the throughputs
in Table 3 for a frequency of 2.5 GHz; this makes it also easier to compare the
three implementations. Besides measuring the throughput, it is, of course, also
possible to obtain theoretical throughput values by simply dividing the CPU’s
clock frequency by the latency-cycles of a single instance. The implementation
introduced in [10] performs (2× 2)-way field operations, but it takes advantage
of a (4 × 1)-way table query for fixed-base scalar multiplication. Our software
outperforms [10] in terms of throughput of keypair generation by over 60%. On
the other hand, the throughput of Nath et al. [20] is much lower since they do
not employ a look-up table in the fixed-base scenario. As for the computation
of shared secrets, our implementation achieves a 45.7% higher throughput than
the currently best latency-optimized software, which is that of [20].

A comparison between our software and other implementations on the Sky-
lake platform can be found in Table 4. Similar as before, we include both the
original results reported by the authors and the latency/throughput measured
by ourselves. Our implementation is able to generate almost 100,000 key pairs
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per second on a 2.0 GHz Skylake CPU, which exceeds the throughput achieved
in [10] by roughly 71.4%. The currently fastest latency-optimized variable-base
scalar multiplication was introduced by Nath et al. in [20]; the execution time
of their implementation became even slightly better (by 1780 cycles) when we
compiled it with the latest version of GCC. Nonetheless, our implementation
outperforms throughput-wise the software of Nath et al. by 52.7%. The results
in Table 3 and Table 4 indicate that using a newer version of a compiler does
not always yield better performance. For example, Hisil et al.’s implementation
for Skylake described in [15] became actually slower when the source code was
compiled with GCC 8.4.0 instead of GCC 5.4.

6 Conclusions

The length of vectors supported by common vector instruction sets like Intel’s
AVX has increased steadily over the past ten years, and this trend is expected
to continue. For example, future generations of ARM and RISC-V processors
can use vectors that are more than 1000 bits long. This makes a strong case to
research how such enormous parallel processing capabilities can be exploited in
ECC. An analysis of existing AVX implementations of Curve25519, which are
all optimized for low latency, indicates that they will most likely not be able to
gain much from longer vectors and increased vector parallelism, mainly due to
some inherent sequential dependencies in the point arithmetic. We proposed in
this paper to use vector engines to maximize throughput rather than minimize
latency. In particular, we introduced the “limb-slicing” technique for AVX2 to
execute four scalar multiplications with different inputs in parallel, each using
a 64-bit element of a 256-bit vector. The parallel processing of four instances
of scalar multiplication that are fully independent among each other improves
the utilization of the vector engine and increases throughput. Our experiments
confirm that limb-sliced AVX2 implementations of fixed-base and variable-base
scalar multiplication outperform their latency-optimized counterparts in terms
of throughput by up to 71.4%. Furthermore, limb-slicing also scales very well
across vector lengths; for example, one can expect that migrating our software
from AVX2 to AVX-512 will roughly double the throughput.

We envision that limb-slicing will play a similar role in public-key cryptog-
raphy as bit-slicing in symmetric cryptography and hope that this paper serves
as inspiration for future research activities in high-performance cryptographic
software. As part of our future work we plan to develop a limb-sliced software
implementation of EdDSA signature verification using AVX-512 instructions. In
addition, we will develop high-throughput software for isogeny-based ECC.
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9. A. Faz-Hernández and J. López. Fast implementation of Curve25519 using AVX2.
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A Source Code of Vectorized Field Operations

Listing 2. Simplified C implementation of (4× 1)-way vectorized field operations

1 #include <immintrin.h>
2 #define VADD(X,Y) _mm256_add_epi64(X,Y) /* VPADDQ */
3 #define VSUB(X,Y) _mm256_sub_epi64(X,Y) /* VPSUBQ */
4 #define VMUL(X,Y) _mm256_mul_epu32(X,Y) /* VPMULUDQ */
5 #define VAND(X,Y) _mm256_and_si256(X,Y) /* VPAND */
6 #define VSRL(X,Y) _mm256_srli_epi64(X,Y) /* VPSRLQ */
7 #define VSLL(X,Y) _mm256_slli_epi64(X,Y) /* VPSLLQ */
8 #define VBCAST(X) _mm256_set1_epi64x(X) /* VPBROADCASTQ */
9 #define MASK29 0x1fffffff /* mask of 29 LSBs */

10

11 /* field addition */
12 void gfp_add(__m256i *r, const __m256i *a, const __m256i *b)
13 {
14 for (int i = 0; i < 9; i++) r[i] = VADD(a[i], b[i]);
15 }
16

17 /* field subtraction (without a carry propagation) */
18 void gfp_sub(__m256i *r, const __m256i *a, const __m256i *b)
19 {
20 /* subtraction loop */
21 r[0] = VADD(VBCAST(2*0 x1ffffb40), VSUB(a[0], b[0]);
22 for (int i = 1; i < 9; i++)
23 r[i] = VADD(VBCAST(2*0 x1fffffff), VSUB(a[i], b[i]);
24 }
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25

26 /* field subtraction (with a carry propagation) */
27 void gfp_sbc(__m256i *r, const __m256i *a, const __m256i *b)
28 {
29 /* subtraction loop */
30 r[0] = VADD(VBCAST(2*0 x1ffffb40), VSUB(a[0], b[0]);
31 for (int i = 1; i < 9; i++)
32 r[i] = VADD(VBCAST(2*0 x1fffffff), VSUB(a[i], b[i]);
33

34 /* carry propagation and conversion to 29-bit limbs*/
35 for (int i = 1; i < 9; i++) {
36 r[i] = VADD(r[i], VSRL(r[i-1], 29));
37 r[i-1] = VAND(r[i-1], VBCAST(MASK29));
38 }
39

40 /* limbs in r[0] can finally be 30 bits long */
41 r[0] = VADD(r[0], VMUL(VBCAST(64*19) , VSRL(r[8], 29)));
42 r[8] = VAND(r[8], VBCAST(MASK29));
43 }
44

45 /* field squaring */
46 void gfp_sqr(__m256i *r, const __m256i *a)
47 {
48 int i, j, k; __m256i t[9], accu , temp;
49

50 /* 1st loop of the product -scanning squaring */
51 t[0] = VMUL(a[0],a[0]);
52 for (i = 1; i < 9; i++) {
53 t[i] = VBCAST(0);
54 for (j = 0, k = i; j < k; j++, k--)
55 t[i] = VADD(t[i], VMUL(a[j], a[k]));
56 t[i] = VSLL(t[i], 1);
57 if (!(i&1)) t[i] = VADD(t[i], VMUL(a[j], a[j]));
58 }
59 accu = VSRL(t[8], 29);
60 t[8] = VAND(t[8], VBCAST(MASK29));
61

62 /* 2nd loop of the product -scanning squaring */
63 for (i = 9; i < 16; i++) {
64 temp = VBCAST(0);
65 for (j = i-8, k = 8; j < k; j++, k--)
66 temp = VADD(r[i-9], VMUL(a[j], a[k]));
67 accu = VADD(accu , VSLL(temp , 1));
68 if (!(i&1)) accu = VADD(accu , VMUL(a[j], a[j]));
69 r[i-9] = VAND(accu , VBCAST(MASK29));
70 accu = VSRL(accu , 29);
71 }
72 accu = VADD(accu , VMUL(a[8], a[8]));
73 r[7] = VAND(accu , VBCAST(MASK29));
74 r[8] = VSRL(accu , 29);
75

76 /* modulo reduction and conversion to 29-bit limbs */
77 accu = VBCAST(0);
78 for (i = 0; i < 9; i++){
79 accu = VADD(accu , VMUL(r[i], VBCAST(64*19))));
80 accu = VADD(accu , t[i]);
81 r[i] = VAND(accu , VBCAST(MASK29));
82 accu = VSRL(accu , 29);
83 }
84

85 /* limbs in r[0] can finally be 30 bits long */
86 r[0] = ADD(r[0], VMUL(accu , VBCAST(64*19)));
87 }
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B Source Code of (4× 1)-Way Point Operations

Listing 3. Simplified C implementation of (4× 1)-way point operations

1 /**
2 * @brief Point addition.
3 *
4 * @details
5 * Unified mixed addition R = P + Q on a twisted Edwards
6 * curve with a = -1.
7 *
8 * @param R Point in extended projective coordinates
9 * [x, y, z, e, h], e*h = t = x*y/z

10 * @param P Point in extended projective coordinates
11 * [x, y, z, e, h], e*h = t = x*y/z
12 * @param Q Point in extended affine coordinates
13 * [(y+x)/2, (y-x)/2, d*x*y]
14 */
15 void point_add(ExtPoint *R, ExtPoint *P, ProPoint *Q)
16 {
17 __m256i t[9];
18

19 gfp_mul(t, P->e, P->h); /* T = EP ×HP */
20 gfp_sub(R->e, P->y, P->x); /* ER = YP −XP */
21 gfp_add(R->h, P->y, P->x); /* HR = YP + XP */
22 gfp_mul(R->x, R->e, Q->y); /* XR = ER × YQ */
23 gfp_mul(R->y, R->h, Q->x); /* YR = HR ×XQ */
24 gfp_sub(R->e, R->y, R->x); /* ER = YR −XR */
25 gfp_add(R->h, R->y, R->x); /* HR = YR + XR */
26 gfp_mul(R->x, t, Q->z); /* XR = T × ZQ */
27 gfp_sbc(t, P->z, R->x); /* T = ZP −XR */
28 gfp_add(R->x, P->z, R->x); /* XR = ZP + XR */
29 gfp_mul(R->z, t, R->x); /* ZR = T ×XR */
30 gfp_mul(R->y, R->x, R->h); /* YR = XR ×HR */
31 gfp_mul(R->x, R->e, t); /* XR = ER × T */
32 }
33

34 /**
35 * @brief Point doubling.
36 *
37 * @details
38 * Doubling R = 2*P on a twisted Edwards curve with a = -1.
39 *
40 * @param R Point in extended projective coordinates
41 * [x, y, z, e, h], e*h = t = x*y/z
42 * @param P Point in extended projective coordinates
43 * [x, y, z, e, h], e*h = t = x*y/z
44 */
45 void point_dbl(ExtPoint *R, ExtPoint *P)
46 {
47 __m256i t[9];
48

49 gfp_sqr(R->e, P->x); /* ER = XP
2 */

50 gfp_sqr(R->h, P->y); /* HR = YP
2 */

51 gfp_sbc(t, R->e, R->h); /* T = ER −HR */
52 gfp_add(R->h, R->e, R->h); /* HR = ER + HR */
53 gfp_add(R->x, P->x, P->y); /* XR = XP + YP */

54 gfp_sqr(R->e, R->x); /* ER = XR
2 */

55 gfp_sub(R->e, R->h, R->e); /* ER = HR −ER */

56 gfp_sqr(R->y, P->z); /* YR = ZP
2 */

57 gfp_mul29(R->y, R->y, 2); /* YR = 2 · YR */
58 gfp_add(R->y, t, R->y); /* YR = T + YR */
59 gfp_mul(R->x, R->e, R->y); /* XR = ER × YR */
60 gfp_mul(R->z, R->y, t); /* ZR = YR × T */
61 gfp_mul(R->y, t, R->h); /* YR = T ×HR */
62 }


